Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Teow SY, Ali SA
    Pak J Pharm Sci, 2016 Nov;29(6):2119-2124.
    PMID: 28375134
    Peptides derived from HIV-1 transmembrane proteins have been extensively studied for antimicrobial activities, and they are known as antimicrobial peptides (AMPs). These AMPs have also been reported to potently combat the drug-resistant microbes. In this study, we demonstrated that peptide #6383 originated from HIV-1 MN strain membrane-spanning domain of gp41 was active (2-log reductions) at 100βg/mL (56.5βM) against methicillin-resistant Staphylococcus aureus (MRSA) in 10% and 50% human plasma-supplemented phosphate buffered saline (PBS). The activity was further enhanced (3-log reductions) in the presence of 5% human serum albumin (HSA) alone. All bactericidal activities were achieved within 6 hours. At 100μg/mL, the peptide showed only 13% toxicity against human erythrocytes. This peptide can serve as an attractive template for a design of a novel peptide antibiotic against drug-resistant bacteria. By sequence-specific engineering or modifications, we anticipated that the bactericidal activity and the reduced toxicity against human erythrocytes will be improved.
  2. Teow SY, Ali SA
    Pak J Pharm Sci, 2017 May;30(3):891-895.
    PMID: 28653935
    This study evaluated the impact of pH (7.4 and 6.5), bovine serum albumin (BSA), and human serum albumin (HSA) on Curcumin activity against 2 reference, 1 clinical, and 10 environmental strains of Staphylococcus aureus (S. aureus). Minimal inhibitory concentrations (MICs) of Curcumin against S. aureus were statistically indifferent (p>0.05) at pH7.4 and pH6.5. Activity of Curcumin against S. aureus was reduced by two folds in the presence of 1.25-5% BSA/HSA.
  3. Awi NJ, Teow SY
    J Pathog, 2018;2018:8724549.
    PMID: 29973995 DOI: 10.1155/2018/8724549
    Acquired immunodeficiency syndrome (AIDS) cases are on the rise globally. To date, there is still no effective measure to eradicate the causative agent, human immunodeficiency virus (HIV). Highly active antiretroviral therapy (HAART) is being used in HIV/AIDS management, but it results in long-term medication and has major drawbacks such as multiple side effects, high cost, and increasing the generation rate of escape mutants. In addition, HAART does not control HIV-related complications, and hence more medications and further management are required. With this, other alternatives are urgently needed. In the past, small-molecule inhibitors have shown potent antiviral effects, and some of them are now being evaluated in clinical trials. The challenges in developing these small molecules for clinical use include the off-target effect, poor stability, and low bioavailability. On the other hand, antibody-mediated therapy has emerged as an important therapeutic modality for anti-HIV therapeutics development. Many antiviral antibodies, namely, broad neutralizing antibodies (bnAbs) against multiple strains of HIV, have shown promising effects in vitro and in animal studies; further studies are ongoing in clinical trials to evaluate their uses in clinical applications. This short review aims to discuss the current development of therapeutic antibodies against HIV and the challenges in adopting them for clinical use.
  4. Teow SY, Ali SA
    Pak J Pharm Sci, 2015 Nov;28(6):2109-14.
    PMID: 26639480
    This study evaluated the synergistic antibacterial activity of Curcumin with 8 different antibiotic groups. Two reference, one clinical and ten environmental strains of Staphylococcus aureus (S. aureus) were tested. Disc diffusion assay with 25 μg/mL Curcumin demonstrated synergism in combination with a majority of tested antibiotics against S. aureus. However, checkerboard micro dilution assay only showed synergism, fractional inhibitory concentration index (FICI) <0.5 in three antibiotics i.e. Gentamicin, Amikacin, and Ciprofloxacin. Other antibiotics showed indifferent interactions but no antagonism was observed. In time-kill curve, appreciable reduction of bacterial cells was also observed in combination therapy (Curcumin + antibiotics) compared to monotherapy (Curcumin or antibiotic(s) alone). The antibiotics with higher synergistic interaction with Curcumin are arranged in a decreasing order: Amikacin > Gentamicin > Ciprofloxacin.
  5. Teow SY, Ali SA
    Pak J Pharm Sci, 2017 Mar;30(2):449-457.
    PMID: 28649069
    Antibacterial effect is one of the major therapeutic activities of plant-derived Curcumin. This work evaluated the effect of serum albumin, human plasma, and whole blood on the in vitro activity of Curcumin against eight clinical bacterial isolates by standard broth microdilution and plate-counting methods. Toxicological effects of Curcumin towards human red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs) were also investigated. Curcumin exhibited weak activity against gram-negative bacteria, except Escherichia coli and Shigella flexneri were susceptible and was most active against gram-positive bacteria: Staphylococcus aureus, Streptococcus pyogenes and Enterococcus faecalis. The antibacterial activity was impaired in the presence of bovine serum albumin (BSA), human plasma and whole blood. Curcumin was not toxic to PBMCs and RBCs at 200μg/mL. Furthermore, Curcumin showed synergistic activity in combination with antibiotics: Ciprofloxacin, Gentamicin, Vancomycin and Amikacin against Staphylococcus aureus. This study demonstrated that the interaction of Curcumin with plasma proteins diminishes its in vitro antibacterial activity. Curcumin derivatives with reduced affinity for plasma protein may improve the bioavailability and antibacterial activities.
  6. Teow SY, Yap HY, Peh SC
    J Pathog, 2017;2017:7349268.
    PMID: 29464124 DOI: 10.1155/2017/7349268
    Epstein-Barr virus (EBV) is a pathogen that infects more than 90% of global human population. EBV primarily targets B-lymphocytes and epithelial cells while some of them infect monocyte/macrophage, T-lymphocytes, and dendritic cells (DCs). EBV infection does not cause death by itself but the infection has been persistently associated with certain type of cancers such as nasopharyngeal carcinoma (NPC), Burkitt's lymphoma (BL), and Hodgkin's lymphoma (HL). Recent findings have shown promise on targeting EBV proteins for cancer therapy by immunotherapeutic approach. Some studies have also shown the success of adopting EBV-based therapeutic vaccines for the prevention of EBV-associated cancer particularly on NPC. In-depth investigations are in progress to refine the current therapeutic and vaccination strategies. In present review, we discuss the highly potential EBV targets for NPC immunotherapy and therapeutic vaccine development as well as addressing the underlying challenges in the process of bringing the therapy and vaccination from the bench to bedside.
  7. Che Nordin MA, Teow SY
    Molecules, 2018 Feb 06;23(2).
    PMID: 29415435 DOI: 10.3390/molecules23020335
    The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
  8. Ooi ZS, Pang SW, Teow SY
    Malays J Pathol, 2022 Dec;44(3):415-428.
    PMID: 36591710
    Colorectal cancer (CRC) remains among the most commonly diagnosed cancers and has been on the rise. It is also one of the most lethal diseases globally, being the third leading cause of cancerrelated death. Depending on the stages and disease conditions, CRC is treated by surgery, chemo-, radio-therapy, immunotherapy or in combination. However, these therapies have subpar results with unwanted side effects, hence continuous effort is ongoing to explore new type of therapeutic modalities. Among the sub-types of CRC, KRAS, BRAF and NRAS mutated CRC comprise approximately 43%, 10% and 3% of the total cases, respectively. These mutations are associated with tumour progression and anti-epidermal growth factor receptor (EGFR) treatment resistance. Due to their important role in CRC, these genes have thus become targets in the development of novel treatments. In this paper, we discuss the current and upcoming treatment on CRC by targeting these mutated genes, with more focus on KRAS and BRAF due to the higher occurrence of mutations in CRC.
  9. Teow SY, Nordin AC, Ali SA, Khoo AS
    Adv Virol, 2016;2016:9852494.
    PMID: 26981123 DOI: 10.1155/2016/9852494
    Nanometre-sized vesicles, also known as exosomes, are derived from endosomes of diverse cell types and present in multiple biological fluids. Depending on their cellular origins, the membrane-bound exosomes packed a variety of functional proteins and RNA species. These microvesicles are secreted into the extracellular space to facilitate intercellular communication. Collective findings demonstrated that exosomes from HIV-infected subjects share many commonalities with Human Immunodeficiency Virus Type I (HIV-1) particles in terms of proteomics and lipid profiles. These observations postulated that HIV-resembled exosomes may contribute to HIV pathogenesis. Interestingly, recent reports illustrated that exosomes from body fluids could inhibit HIV infection, which then bring up a new paradigm for HIV/AIDS therapy. Accumulative findings suggested that the cellular origin of exosomes may define their effects towards HIV-1. This review summarizes the two distinctive roles of exosomes in regulating HIV pathogenesis. We also highlighted several additional factors that govern the exosomal functions. Deeper understanding on how exosomes promote or abate HIV infection can significantly contribute to the development of new and potent antiviral therapeutic strategy and vaccine designs.
  10. Yap HY, Siow TS, Chow SK, Teow SY
    Adv Virol, 2019;2019:6464521.
    PMID: 31049064 DOI: 10.1155/2019/6464521
    Epstein-Barr virus (EBV) is one of the common human herpesvirus types in the world. EBV is known to infect more than 95% of adults in the world. The virus mainly infects B lymphocytes and could immortalize and transform the cells into EBV-bearing lymphoblastoid cell lines (LCLs). Limited studies have been focused on characterizing the surface marker expression of the immortalized LCLs. This study demonstrates the generation of 15 LCLs from sixteen rheumatoid arthritis (RA) patients and a healthy volunteer using B95-8 marmoset-derived EBV. The success rate of LCL generation was 88.23%. All CD19+ LCLs expressed CD23 (16.94-58.9%) and CD27 (15.74-80.89%) on cell surface. Our data demonstrated two distinct categories of LCLs (fast- and slow-growing) (p<0.05) based on their doubling time. The slow-growing LCLs showed lower CD23 level (35.28%) compared to fast-growing LCLs (42.39%). In contrast, the slow-growing LCLs showed higher percentage in both CD27 alone and CD23+CD27+ in combination. Overall, these findings may suggest the correlations of cellular CD23 and CD27 expression with the proliferation rate of the generated LCLs. Increase expression of CD23 may play a role in EBV immortalization of B-cells and the growth and maintenance of the EBV-transformed LCLs while CD27 expression might have inhibitory effects on LCL proliferation. Further investigations are warranted to these speculations.

    Study site: Sunway Medical Centre, Malaysia
  11. Awi NJ, Armon S, Peh KB, Peh SC, Teow SY
    Malays J Pathol, 2020 Apr;42(1):85-90.
    PMID: 32342935
    INTRODUCTION: Autophagy is a mechanism that degrades large damaged organelles and misfolded proteins to maintain the homeostasis in all cells. It plays double-faceted roles in tumourigenesis and prevention of various cancers. In our side observation of investigating the prognostic value of autophagy in colorectal cancer (CRC), we found high expression of autophagy proteins (LC3A, LC3B, and p62/SQSTM1) in the colonic ganglion cells. To our best understanding, this is the first paper reporting such finding.

    MATERIALS AND METHODS: Formalin-fixed paraffin-embedded (FFPE) CRC tissues blocks were retrieved and confirmed by haematoxylin & eosin (H&E) staining. Immunohistochemistry (IHC) targeting autophagy proteins (LC3A, LC3B, and p62/SQSTM1) was then performed followed by pathological examination.

    RESULTS: All three autophagy proteins were present in both normal and tumour tissues of CRC patients. Interestingly, high expression of autophagy proteins in colonic ganglion cells was consistently seen regardless of tissue type (normal or cancer) or tumour site (caecum, ascending, transverse, descending, sigmoid colon and rectum).

    CONCLUSIONS: This work highlights the high autophagic activities in human colonic ganglion cells.

  12. Teow SY, Liew K, Khoo AS, Peh SC
    Int J Biol Sci, 2017;13(10):1276-1286.
    PMID: 29104494 DOI: 10.7150/ijbs.19531
    Exosomes are 40- to 100-nm membrane-bound small vesicles that carry a great variety of cellular cargoes including proteins, DNA, messenger RNAs (mRNAs), and microRNAs (miRNAs). These nanovesicles are detected in various biological fluids such as serum, urine, saliva, and seminal fluids. Exosomes serve as key mediators in intercellular communication by facilitating the transfer and exchange of cellular components from cells to cells. They contain various pathogenic factors whereby their adverse effects have been implicated in multiple viral infections and cancers. Interestingly, accumulating evidences showed that exosomes derived from tumour viruses or oncoviruses, exacerbate virus-associated cancers by remodelling the tumour microenvironment. In this review, we summarize the contributing factors of Epstein-Barr virus (EBV) products-containing exosomes in viral pathogenesis and their potential implications in EBV-driven malignancies. Understanding the biological role of these exosomes in the disease would undoubtedly boost the development of a more comprehensive strategy to combat EBV-associated cancers and to better predict the therapeutic outcomes. Furthermore, we also highlight the potentials and challenges of EBV products-containing exosomes being employed as diagnostic markers and therapeutic targets for EBV-related cancers. Since these aspects are rather underexplored, we attempt to underline interesting areas that warrant further investigations in the future.
  13. Ali SA, Teow SY, Omar TC, Khoo AS, Choon TS, Yusoff NM
    PLoS One, 2016;11(1):e0145986.
    PMID: 26741963 DOI: 10.1371/journal.pone.0145986
    There remains a need for newer therapeutic approaches to combat HIV/AIDS. Viral capsid protein p24 plays important roles in HIV pathogenesis. Peptides and small molecule inhibitors targeting p24 have shown to inhibit virus replication in treated cell. High specificity and biological stability of monoclonal antibodies (mAbs) make them an attractive contender for in vivo treatments. However, mAbs do not enter into cells, thus are restricted to target surface molecules. This also makes targeting intracellular HIV-1 p24 a challenge. A mAb specific to p24 that can internalize into the HIV-infected cells is hypothesized to inhibit the virus replication. We selected a mAb that has previously shown to inhibit p24 polymerization in an in vitro assay and chemically conjugated it with cell penetrating peptides (CPP) to generate cell internalizing anti-p24 mAbs. Out of 8 CPPs tested, κFGF-MTS -conjugated mAbs internalized T cells most efficiently. At nontoxic concentration, the κFGF-MTS-anti-p24-mAbs reduced the HIV-1 replication up to 73 and 49% in T-lymphocyte and PBMCs respectively. Marked inhibition of HIV-1 replication in relevant cells by κFGF-MTS-anti-p24-mAbs represents a viable strategy to target HIV proteins present inside the cells.
  14. Al-Alimi AA, Ali SA, Al-Hassan FM, Idris FM, Teow SY, Mohd Yusoff N
    PLoS Negl Trop Dis, 2014 Mar;8(3):e2711.
    PMID: 24625456 DOI: 10.1371/journal.pntd.0002711
    Dengue virus is endemic in peninsular Malaysia. The clinical manifestations vary depending on the incubation period of the virus as well as the immunity of the patients. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is prevalent in Malaysia where the incidence is 3.2%. It has been noted that some G6PD-deficient individuals suffer from more severe clinical presentation of dengue infection. In this study, we aim to investigate the oxidative responses of DENV2-infected monocytes from G6PD-deficient individuals.
  15. Mualif SA, Teow SY, Omar TC, Chew YW, Yusoff NM, Ali SA
    PLoS One, 2015;10(7):e0130446.
    PMID: 26147991 DOI: 10.1371/journal.pone.0130446
    Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW) rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef), HIV-1 p24 (ca), and HIV-1 vif in NiCo21(DE3) E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.
  16. Ismail NA, Shameli K, Wong MM, Teow SY, Chew J, Sukri SNAM
    Mater Sci Eng C Mater Biol Appl, 2019 Nov;104:109899.
    PMID: 31499959 DOI: 10.1016/j.msec.2019.109899
    In this study, a comparative study of effect using honey on copper nanoparticles (Cu-NPs) via simple, environmentally friendly process and inexpensive route was reported. Honey and ascorbic acid act as stabilizing and reducing agents with the assistance of sonochemical method. The products were characterized using UV-visible (UV-vis) spectroscopy, X-Ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HRTEM), Field-Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR) spectroscopy. The reddish brown colour demonstrated the formation of Cu-NPs and UV-visible proved the plasmon resonance of Cu-NPs. XRD also confirmed a highly pure Cu-NPs obtained with absence of copper oxide in which the structure is crystalline. The spherical size of the Cu-NPs was acquire in the presence of honey which is 3.68 ± 0.78 nm with narrow particle distribution. The antibacterial activity was seen against gram-positive and gram-negative bacteria which are Enterococcus faecalis (E. faecalis) and Escherichia coli (E. coli). At higher concentration of Cu-NPs, they were more effective in killing both bacteria. The Cu-NPs without and with honey exhibited toxicities toward normal and cancerous cells. However, Cu-NPs without honey showed more potent killing activity against normal and cancer cells.
  17. Izadiyan Z, Shameli K, Miyake M, Teow SY, Peh SC, Mohamad SE, et al.
    PMID: 30606561 DOI: 10.1016/j.msec.2018.11.008
    Core-shell Fe3O4/Au nanostructures were constructed using an advanced method of two-step synthesis from Juglans regia (walnut) green husk extract. Several complementary methods were applied to investigate structural and magnetic properties of the samples. X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), electron diffraction, optical, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM) were used for nanoparticle characterizations. As shown by HR-TEM, the mean diameter of core-shell Fe3O4/Au nanoparticles synthesized using co-precipitation method was 6.08 ± 1.06 nm. This study shows that the physical and structural properties of core-shell Fe3O4/Au nanoparticles possess intrinsic properties of gold and magnetite. VSM revealed that the core-shell Fe3O4/Au have high saturation magnetization and low coercivity due to the magnetic properties. The core-shell nanoparticles show the inhibitory concentration (IC)50 of 235 μg/ml against a colorectal cancer cell line, HT-29. When tested against non-cancer cells, IC50 was not achieved even up to 500 μg/ml. This study highlights the magnetic properties and anticancer action of core-shell Fe3O4/Au nanoparticles. This compound can be ideal candidate for cancer treatment and other biomedical applications.
  18. Teow SY, Liew K, Ali SA, Khoo AS, Peh SC
    J Trop Med, 2016;2016:2853045.
    PMID: 27956904
    Curcumin, the major constituent of Curcuma longa L. (Zingiberaceae family) or turmeric, commonly used for cooking in Asian cuisine, is known to possess a broad range of pharmacological properties at relatively nontoxic doses. Curcumin is found to be effective against Staphylococcus aureus (S. aureus). As demonstrated by in vitro experiment, curcumin exerts even more potent effects when used in combination with various other antibacterial agents. Hence, curcumin which is a natural product derived from plant is believed to have profound medicinal benefits and could be potentially developed into a naturally derived antibiotic in the future. However, there are several noteworthy challenges in the development of curcumin as a medicine. S. aureus infections, particularly those caused by the multidrug-resistant strains, have emerged as a global health issue and urgent action is needed. This review focuses on the antibacterial activities of curcumin against both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA). We also attempt to highlight the potential challenges in the effort of developing curcumin into a therapeutic antibacterial agent.
  19. Yew YP, Shameli K, Mohamad SE, Lee KX, Teow SY
    Int J Mol Sci, 2020 Jul 09;21(14).
    PMID: 32659939 DOI: 10.3390/ijms21144851
    Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50-0.734 mg/mL) compared to the unloaded NCs (IC50-1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
  20. Teow SY, Mualif SA, Omar TC, Wei CY, Yusoff NM, Ali SA
    BMC Biotechnol, 2013;13:107.
    PMID: 24304876 DOI: 10.1186/1472-6750-13-107
    HIV genome is packaged and organized in a conical capsid, which is made up of ~1,500 copies of the viral capsid protein p24 (CA). Being a primary structural component and due to its critical roles in both late and early stages of the HIV replication cycle, CA has attracted increased interest as a drug discovery target in recent years. Drug discovery studies require large amounts of highly pure and biologically active protein. It is therefore desirable to establish a simple and reproducible process for efficient production of HIV-1 CA.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links