Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Tiekink ERT
    Coord Chem Rev, 2021 Jan 15;427:213586.
    PMID: 33100367 DOI: 10.1016/j.ccr.2020.213586
    The Cambridge Structural Database was evaluated for crystals containing Se…O chalcogen bonding interactions. These secondary bonding interactions are found to operate independently of complementary intermolecular interactions in about 13% of the structures they can potentially form. This number rises significantly when more specific interactions are considered, e.g. Se…O(carbonyl) interactions occur in 50% of cases where they can potentially form. In about 55% of cases, the supramolecular assemblies sustained by Se…O(oxygen) interactions are one-dimensional architectures, with the next most prominent being zero-dimensional assemblies, at 30%.
  2. Poplaukhin P, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 8):1246-1251.
    PMID: 28932446 DOI: 10.1107/S2056989017010568
    The common structural feature of the title compounds, [Zn(C4H8NOS2)2(C5H5N)]·C5H5N (I) and [Zn(C5H10NOS2)2(C5H5N)]·C5H5N (II), which differ by having di-thio-carbamate N-bound methyl (I) and ethyl (II) groups, is the coordination of each Zn(II) atom by two non-symmetrically chelating di-thio-carbamate ligands and by a pyridine ligand; in each case, the non-coordinating pyridine mol-ecule is connected to the Zn-containing mol-ecule via a (hy-droxy)O-H⋯N(pyridine) hydrogen bond. The resulting NS4 coordination geometry is closer to a square-pyramid than a trigonal bipyramid in the case of (I), but almost inter-mediate between the two extremes in (II). The mol-ecular packing features (hy-droxy)O-H⋯O(hy-droxy) hydrogen bonds, leading to supra-molecular chains with a zigzag arrangement along [10-1] (I) or a helical arrangement along [010] (II). In (I), π-π [inter-centroid distances = 3.4738 (10) and 3.4848 (10) Å] between coordinating and non-coordinating pyridine mol-ecules lead to stacks comprising alternating rings along the a axis. In (II), weaker π-π contacts occur between centrosymmetrically related pairs of coordinating pyridine mol-ecules [inter-centroid separation = 3.9815 (14) Å]. Further inter-actions, including C-H⋯π(chelate) inter-actions in (I), lead to a three-dimensional architecture in each case.
  3. Tan YS, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Nov 01;73(Pt 11):1642-1646.
    PMID: 29152341 DOI: 10.1107/S2056989017014396
    The title structures, [M(C6H12NOS2)2(C10H8N2)]·0.5C10H8N2, for M = Zn, (I), and Cd, (II), feature terminally bound 4,4'-bipyridyl ligands and non-coordinating 4,4'-bi-pyridyl mol-ecules, with the latter disposed about a centre of inversion. The coordination geometry about the metal atom is defined by two non-symmetrically chelating di-thio-carbamate ligands and a pyridyl N atom. The NS4 donor sets are distorted but, approximate to trigonal bipyramidal in each case. In the crystal, hy-droxy-O-H⋯O(hy-droxy) and hy-droxy-O-H⋯N(pyrid-yl) hydrogen bonds between the zinc-containing mol-ecules lead to a supra-molecular layer parallel to (100). The three-dimensional architecture arises as the layers are linked via methine-C-H⋯S, pyridyl-C-H⋯O(hy-droxy) and π-π [inter-centroid distance between coordinated pyridyl rings = 3.6246 (18) Å] inter-actions. Channels along the c-axis direction are occupied by the non-coordinating 4,4'-bipyridine mol-ecules, which are held in place by C-H⋯π(chelate ring) contacts.
  4. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Apr 01;75(Pt 4):475-481.
    PMID: 31161060 DOI: 10.1107/S205698901900375X
    The asymmetric unit of the three-component title compound, 2,2'-di-thiodi-benzoic acid-2-chloro-benzoic acid-N,N-di-methyl-formamide (1/1/1), C14H10O4S2·C7H5ClO2·C3H7NO, contains a mol-ecule each of 2,2'-di-thiodi-benzoic acid (DTBA), 2-chloro-benzoic acid (2CBA) and di-methyl-formamide (DMF). The DTBA mol-ecule is twisted [the C-S-S-C torsion angle is 88.37 (17)°] and each carb-oxy-lic group is slightly twisted from the benzene ring to which it is connected [CO2/C6 dihedral angles = 7.6 (3) and 12.5 (3)°]. A small twist is evident in the mol-ecule of 2CBA [CO2/C6 dihedral angle = 4.4 (4)°]. In the crystal, the three mol-ecules are connected by hydrogen bonds with the two carb-oxy-lic acid residues derived from DTBA and 2CBA forming a non-symmetric eight-membered {⋯HOCO}2 synthon, and the second carb-oxy-lic acid of DTBA linked to the DMF mol-ecule via a seven-membered {⋯HOCO⋯HCO} heterosynthon. The three-mol-ecule aggregates are connected into a supra-molecular chain along the a axis via DTBA-C-H⋯O(hydroxyl-2CBA), 2CBA-C-H⋯O(hydroxyl-DTBA) and DTBA-C-H⋯S(DTBA) inter-actions. Supra-molecular layers in the ab plane are formed as the chains are linked via DMF-C-H⋯S(DTBA) contacts, and these inter-digitate along the c-axis direction without specific points of contact between them. A Hirshfeld surface analysis points to additional but, weak contacts to stabilize the three-dimensional architecture: DTBA-C=O⋯H(phenyl-DTBA), 2CBA-Cl⋯H(phenyl-DTBA), as well as a π-π contact between the delocalized eight-membered {⋯HOC=O}2 carb-oxy-lic dimer and the phenyl ring of 2CBA. The latter was confirmed by electrostatic potential (ESP) mapping.
  5. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Jan 01;75(Pt 1):1-7.
    PMID: 30713723 DOI: 10.1107/S2056989018017097
    The asymmetric unit of the title 1:2 co-crystal, C14H10O4S2·2C7H6O2, comprises half a mol-ecule of di-thiodi-benzoic acid [systematic name: 2-[(2-carb-oxy-phen-yl)disulfan-yl]benzoic acid, DTBA], as the mol-ecule is located about a twofold axis of symmetry, and a mol-ecule of benzoic acid (BA). The DTBA mol-ecule is twisted about the di-sulfide bond [the C-S-S-C torsion angle is -83.19 (8)°] resulting in a near perpendicular relationship between the benzene rings [dihedral angle = 71.19 (4)°]. The carb-oxy-lic acid group is almost co-planar with the benzene ring to which it is bonded [dihedral angle = 4.82 (12)°]. A similar near co-planar relationship pertains for the BA mol-ecule [dihedral angle = 3.65 (15)°]. Three-mol-ecule aggregates are formed in the crystal whereby two BA mol-ecules are connected to a DTBA mol-ecule via hy-droxy-O-H⋯O(hydroxy) hydrogen bonds and eight-membered {⋯HOC=O}2 synthons. These are connected into a supra-molecular layer in the ab plane through C-H⋯O inter-actions. The inter-actions between layers to consolidate the three-dimensional architecture are π-π stacking inter-actions between DTBA and BA rings [inter-centroid separation = 3.8093 (10) Å] and parallel DTBA-hy-droxy-O⋯π(BA) contacts [O⋯ring centroid separation = 3.9049 (14) Å]. The importance of the specified inter-actions as well as other weaker contacts, e.g. π-π and C-H⋯S, are indicated in the analysis of the calculated Hirshfeld surface and inter-action energies.
  6. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Dec 01;74(Pt 12):1764-1771.
    PMID: 30574371 DOI: 10.1107/S205698901801544X
    The asymmetric unit of the title co-crystal, 2,2'-thiodi-benzoic acid-tri-phenyl-phosphane oxide (1/2), C14H10O4S·2C18H15OP, comprises two mol-ecules of 2,2'-thiodi-benzoic acid [TDBA; systematic name: 2-[(2-carb-oxy-phen-yl)sulfan-yl]benzoic acid] and four mol-ecules of tri-phenyl-phosphane oxide [TPPO; systematic name: (di-phenyl-phosphor-yl)benzene]. The two TDBA mol-ecules are twisted about their di-sulfide bonds and exhibit dihedral angles of 74.40 (5) and 72.58 (5)° between the planes through the two SC6H4 residues. The carb-oxy-lic acid groups are tilted out of the planes of the rings to which they are attached forming a range of CO2/C6 dihedral angles of 19.87 (6)-60.43 (8)°. Minor conformational changes are exhibited in the TPPO mol-ecules with the range of dihedral angles between phenyl rings being -2.1 (1) to -62.8 (1)°. In the mol-ecular packing, each TDBA acid mol-ecule bridges two TPPO mol-ecules via hy-droxy-O-H⋯O(oxide) hydrogen bonds to form two three-mol-ecule aggregates. These are connected into a three-dimensional architecture by TPPO-C-H⋯O(oxide, carbon-yl) and TDBA-C-H⋯(oxide, carbon-yl) inter-actions. The importance of H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts to the calculated Hirshfeld surfaces has been demonstrated. In terms of individual mol-ecules, O⋯H/H⋯O contacts are more important for the TDBA (ca 28%) than for the TPPO mol-ecules (ca 13%), as expected from the chemical composition of these species. Computational chemistry indicates the four independent hy-droxy-O-H⋯O(oxide) hydrogen bonds in the crystal impart about the same energy (ca 52 kJ mol-1), with DTBA-phenyl-C-H⋯O(oxide) inter-actions being next most stabilizing (ca 40 kJ mol-1).
  7. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Jun 01;76(Pt 6):933-939.
    PMID: 32523767 DOI: 10.1107/S2056989020006829
    The title di-substituted thio-urea, C12H16N2O3S, has the hy-droxy-lethyl and ethyl benzoate substituents bound to the same amine-N atom, and is twisted, having a (+)syn-clinal conformation with the Namine-C-C-O(hydroxyl, carbon-yl) torsion angles of 49.39 (13) and 59.09 (12)°, respectively; the dihedral angle between the almost planar CN2S core and the pendent benzene ring is 69.26 (4)°. In the crystal, supra-molecular layers propagating in the ac plane are formed via a combination of hydroxyl-O-H⋯S(thione), amine-N-H⋯O(hydroxyl, carbon-yl) hydrogen-bonds. The layers stack along the b axis with inter-digitation of the benzene rings allowing the formation of π-π stacking [inter-centroid separation = 3.8722 (7) Å] and parallel C=O⋯π inter-actions. A computational chemistry study shows the conventional hydrogen bonding in the crystal leads to significant electrostatic stabilization but dispersion terms are also apparent, notably through the inter-actions involving the benzene residue.
  8. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Jun 01;76(Pt 6):870-876.
    PMID: 32523755 DOI: 10.1107/S2056989020006568
    The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises a half-mol-ecule of oxalamide (4LH2), being located about a centre of inversion, and a mol-ecule of3-chloro-benzoic acid (3-ClBA) in a general position. From symmetry, the 4LH2 mol-ecule has a (+)anti-periplanar conformation with the 4-pyridyl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angle between the core and pyridyl ring being 74.69 (11)°; intra-molecular amide-N-H⋯O(amide) hydrogen bonds are noted. The 3-ClBA mol-ecule exhibits a small twist as seen in the C6/CO2 dihedral angle of 8.731 (12)°. In the mol-ecular packing, three-mol-ecule aggregates are formed via carb-oxy-lic acid-O-H⋯N(pyrid-yl) hydrogen bonding. These are connected into a supra-molecular tape along [111] through amide-N-H⋯O(carbon-yl) hydrogen bonding. Additional points of contact between mol-ecules include pyridyl and benzoic acid-C-H⋯O(amide), methyl-ene-C-H⋯O(carbon-yl) and C-Cl⋯π(pyrid-yl) inter-actions so a three-dimensional architecture results. The contributions to the calculated Hirshfeld surface are dominated by H⋯H (28.5%), H⋯O/O⋯H (23.2%), H⋯C/C⋯H (23.3%), H⋯Cl/Cl⋯H (10.0%) and C⋯Cl/C⋯Cl (6.2%) contacts. Computational chemistry confirms the C-Cl⋯π inter-action is weak, and the importance of both electrostatic and dispersion terms in sustaining the mol-ecular packing despite the strong electrostatic term provided by the carb-oxy-lic acid-O-H⋯N(pyrid-yl) hydrogen bonds.
  9. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Jan 01;76(Pt 1):25-31.
    PMID: 31921447 DOI: 10.1107/S2056989019016153
    The mol-ecular structure of the title bis-pyridyl substituted di-amide hydrate, C14H14N4O2·H2O, features a central C2N2O2 residue (r.m.s. deviation = 0.0205 Å) linked at each end to 3-pyridyl rings through methyl-ene groups. The pyridyl rings lie to the same side of the plane, i.e. have a syn-periplanar relationship, and form dihedral angles of 59.71 (6) and 68.42 (6)° with the central plane. An almost orthogonal relationship between the pyridyl rings is indicated by the dihedral angle between them [87.86 (5)°]. Owing to an anti disposition between the carbonyl-O atoms in the core, two intra-molecular amide-N-H⋯O(carbon-yl) hydrogen bonds are formed, each closing an S(5) loop. Supra-molecular tapes are formed in the crystal via amide-N-H⋯O(carbon-yl) hydrogen bonds and ten-membered {⋯HNC2O}2 synthons. Two symmetry-related tapes are linked by a helical chain of hydrogen-bonded water mol-ecules via water-O-H⋯N(pyrid-yl) hydrogen bonds. The resulting aggregate is parallel to the b-axis direction. Links between these, via methyl-ene-C-H⋯O(water) and methyl-ene-C-H⋯π(pyrid-yl) inter-actions, give rise to a layer parallel to (10); the layers stack without directional inter-actions between them. The analysis of the Hirshfeld surfaces point to the importance of the specified hydrogen-bonding inter-actions, and to the significant influence of the water mol-ecule of crystallization upon the mol-ecular packing. The analysis also indicates the contribution of methyl-ene-C-H⋯O(carbon-yl) and pyridyl-C-H⋯C(carbon-yl) contacts to the stability of the inter-layer region. The calculated inter-action energies are consistent with importance of significant electrostatic attractions in the crystal.
  10. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Feb 01;76(Pt 2):245-253.
    PMID: 32071755 DOI: 10.1107/S2056989020000572
    The asymmetric unit of the title 1:2 co-crystal, C14H14N4O2·2C7H5ClO2, comprises two half mol-ecules of oxalamide (4LH2), as each is disposed about a centre of inversion, and two mol-ecules of 4-chloro-benzoic acid (CBA), each in general positions. Each 4LH2 mol-ecule has a (+)anti-periplanar conformation with the pyridin-4-yl residues lying to either side of the central, planar C2N2O2 chromophore with the dihedral angles between the respective central core and the pyridyl rings being 68.65 (3) and 86.25 (3)°, respectively, representing the major difference between the independent 4LH2 mol-ecules. The anti conformation of the carbonyl groups enables the formation of intra-molecular amide-N-H⋯O(amide) hydrogen bonds, each completing an S(5) loop. The two independent CBA mol-ecules are similar and exhibit C6/CO2 dihedral angles of 8.06 (10) and 17.24 (8)°, indicating twisted conformations. In the crystal, two independent, three-mol-ecule aggregates are formed via carb-oxy-lic acid-O-H⋯N(pyrid-yl) hydrogen bonding. These are connected into a supra-molecular tape propagating parallel to [100] through amide-N-H⋯O(amide) hydrogen bonding between the independent aggregates and ten-membered {⋯HNC2O}2 synthons. The tapes assemble into a three-dimensional architecture through pyridyl- and methyl-ene-C-H⋯O(carbon-yl) and CBA-C-H⋯O(amide) inter-actions. As revealed by a more detailed analysis of the mol-ecular packing by calculating the Hirshfeld surfaces and computational chemistry, are the presence of attractive and dispersive Cl⋯C=O inter-actions which provide inter-action energies approximately one-quarter of those provided by the amide-N-H⋯O(amide) hydrogen bonding sustaining the supra-molecular tape.
  11. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Jan 01;76(Pt 1):102-110.
    PMID: 31921461 DOI: 10.1107/S2056989019016840
    The crystal and mol-ecular structures of the title 1:2 co-crystal, C14H14N4O2·2C7H6O2, are described. The oxalamide mol-ecule has a (+)-anti-periplanar conformation with the 4-pyridyl residues lying to either side of the central, almost planar C2N2O2 chromophore (r.m.s. deviation = 0.0555 Å). The benzoic acid mol-ecules have equivalent, close to planar conformations [C6/CO2 dihedral angle = 6.33 (14) and 3.43 (10)°]. The formation of hy-droxy-O-H⋯N(pyrid-yl) hydrogen bonds between the benzoic acid mol-ecules and the pyridyl residues of the di-amide leads to a three-mol-ecule aggregate. Centrosymmetrically related aggregates assemble into a six-mol-ecule aggregate via amide-N-H⋯O(amide) hydrogen bonds through a 10-membered {⋯HNC2O}2 synthon. These are linked into a supra-molecular tape via amide-N-H⋯O(carbon-yl) hydrogen bonds and 22-membered {⋯HOCO⋯NC4NH}2 synthons. The contacts between tapes to consolidate the three-dimensional architecture are of the type methyl-ene-C-H⋯O(amide) and pyridyl-C-H⋯O(carbon-yl). These inter-actions are largely electrostatic in nature. Additional non-covalent contacts are identified from an analysis of the calculated Hirshfeld surfaces.
  12. Ramle AQ, Tiekink ERT
    Org Biomol Chem, 2023 Apr 05;21(14):2870-2888.
    PMID: 36919641 DOI: 10.1039/d3ob00192j
    Dibenzo[1,5]diazocine scaffolds are present in a wide range of organic building blocks, for example in pharmaceuticals, materials and structural chemistry. However, the development of these structural frameworks has not received significant attention owing to limited synthetic protocols and strategies. Herein, a summary of the attractive synthetic approaches for the construction of dibenzo[1,5]diazocines, epiminodibenzo[1,5]diazocines and epoxydibenzo[1,5]diazocines developed over the past two decades is presented. The spectroscopic, synthetic mechanisms for the formation of the heterocyclic rings and remarkable structural features, including in the solid-state, are discussed.
  13. Wardell JL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Dec 01;74(Pt 12):1735-1740.
    PMID: 30574365 DOI: 10.1107/S2056989018015578
    The crystal and mol-ecular structures of the title mol-ecular salts, C4H12NO+·C7H5N2O4 -, (I), C6H16NO+·C7H5N2O4 -, (II), and C4H12NO3 +·C7H5N2O4 -, (III), are described. The common feature of these salts is the presence of the 2-amino-4-nitro-benzoate anion, which exhibit non-chemically significant variations in the conformational relationships between the carboxyl-ate and nitro groups, and between these and the benzene rings they are connected to. The number of ammonium-N-H H atoms in the cations increases from one to three in (I) to (III), respectively, and this variation significantly influences the supra-molecular aggregation patterns in the respective crystals. Thus, a linear supra-molecular chain along [100] sustained by charge-assisted tertiary-ammonium-N-H⋯O(carboxyl-ate), hy-droxy-O-H⋯O(carboxyl-ate) and amino-N-H⋯O(carboxyl-ate) hydrogen-bonds is apparent in the crystal of (I). Chains are connected into a three-dimensional architecture by methyl-C-H⋯O(hy-droxy) and π-π inter-actions, the latter between benzene rings [inter-centroid separation = 3.5796 (10) Å]. In the crystal of (II), a supra-molecular tube propagating along [901] arises as a result of charge-assisted secondary-ammonium-N-H⋯O(carboxyl-ate) and hy-droxy-O-H⋯O(carboxyl-ate) hydrogen-bonding. These are connected by methyl-ene- and methyl-C-H⋯O(nitro) and π-π stacking between benzene rings [inter-centroid separation = 3.5226 (10) Å]. Finally, double-layers parallel to (100) sustained by charge-assisted ammonium-N-H⋯O(carboxyl-ate), ammonium-N-H⋯O(hy-droxy) and hy-droxy-O-H⋯O(carboxyl-ate) hydrogen-bonds are apparent in the crystal of (III). These are connected in a three-dimensional architecture by amine-N-H⋯O(nitro) hydrogen-bonds.
  14. Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2020 Jul 01;76(Pt 7):1150-1157.
    PMID: 32695471 DOI: 10.1107/S2056989020008257
    The title 1:1 solvate, C14H10O4S2·C3H7NO, features a twisted mol-ecule of 2,2'-di-thiodi-benzoic acid (DTBA), with the central C-S-S-C torsion angle being -88.57 (6)°, and a mol-ecule of di-methyl-formamide (DMF). The carb-oxy-lic acid groups are, respectively, close to co-planar and twisted with respect to the benzene rings to which they are connected as seen in the CO2/C6 torsion angles of 1.03 (19) and 7.4 (2)°. Intra-molecular, hypervalent S←O inter-actions are noted [S⋯O = 2.6140 (9) and 2.6827 (9) Å]. In the crystal, four-mol-ecule aggregates are formed via DTBA-O-H⋯O(DMF) and DTBA-O-H⋯O(DTBA) hydrogen bonding, the latter via an eight-membered {⋯OHCO}2 homosynthon. These are linked into supra-molecular layers parallel to (011) via benzene-C-H⋯O(DTBA) and DTBA-C=O⋯π(benzene) inter-actions, with the connections between these, giving rise to a three-dimensional architecture, being of the type benzene-C-H⋯π(benzene). An analysis of the calculated Hirshfeld surfaces indicates, in addition to the aforementioned inter-molecular contacts, the presence of stabilizing inter-actions between a benzene ring and a quasi-π-system defined by O-H⋯O hydrogen bonds between a DTBA dimer, i.e. the eight-membered {⋯OCOH}2 ring system, and between a benzene ring and a quasi-π(OCOH⋯OCH) system arising from the DTBA-O-H⋯O(DMF) hydrogen bond. The inter-centroid separations are 3.65 and 3.49 Å, respectively.
  15. Arman HD, Poplaukhin P, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Oct 01;73(Pt 10):1501-1507.
    PMID: 29250367 DOI: 10.1107/S2056989017012956
    The title structures, [Zn2(C3H6NS2)4(C14H14N4O2)]·2C3H7NO (I) and [Zn2(C7H14NS2)4(C14H14N4O2)] (II), each feature a bidentate, bridging bipyridyl-type ligand encompassing a di-amide group. In (I), the binuclear compound is disposed about a centre of inversion, leading to an open conformation, while in (II), the complete mol-ecule is completed by the application of a twofold axis of symmetry so that the bridging ligand has a U-shape. In each of (I) and (II), the di-thio-carbamate ligands are chelating with varying degrees of symmetry, so the zinc atom is within an NS4 set approximating a square-pyramid for (I) and a trigonal-bipyramid for (II). The solvent di-methyl-formaide (DMF) mol-ecules in (I) connect to the bridging ligand via amide-N-H⋯O(DMF) and various amide-, DMF-C-H⋯O(amide, DMF) inter-actions. The resultant three-mol-ecule aggregates assemble into a three-dimensional architecture via C-H⋯π(pyridyl, chelate ring) inter-actions. In (II), undulating tapes sustained by amide-N-H⋯O(amide) hydrogen bonding lead to linear supra-molecular chains with alternating mol-ecules lying to either side of the tape; no further directional inter-actions are noted in the crystal.
  16. Poplaukhin P, Arman HD, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jul 01;73(Pt 8):1162-1166.
    PMID: 28932428 DOI: 10.1107/S2056989017010179
    The title compound, {[Zn(C9H11N2S2)2]·0.5C6H7N} n , comprises two independent, but chemically similar, Zn[S2CN(Et)CH2py]2 residues and a 4-methyl-pyridine solvent mol-ecule in the asymmetric unit. The Zn-containing units are connected into a one-dimensional coordination polymer (zigzag topology) propagating in the [010] direction, with one di-thio-carbamate ligand bridging in a μ2-κ(3) mode, employing one pyridyl N and both di-thio-carbamate S atoms, while the other is κ(2)-chelating. In each case, the resultant ZnNS4 coordination geometry approximates a square pyramid, with the pyridyl N atom in the apical position. In the crystal, the chains are linked into a three-dimensional architecture by methyl- and pyridyl-C-H⋯S, methyl-ene-C-H⋯N(pyrid-yl) and pyridyl-C-H⋯π(ZnS2C) inter-actions. The connection between the chain and the 4-methyl-pyridine solvent mol-ecule is of the type pyridyl-C-H⋯N(4-methyl-pyridine).
  17. Arman HD, Poplaukhin P, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):488-492.
    PMID: 28435704 DOI: 10.1107/S2056989017003516
    The title compound, {[Cd(C9H11N2S2)2]·C6H7N} n , features two μ2-κ3-di-thio-carbamate ligands each of which chelates one CdII atom, via the S atoms, while simultaneously bridging to another via the pyridyl-N atom. The result is a two-dimensional coordination polymer extending parallel to the ab plane with square channels along the b axis. The CdII atom geometry is based on a distorted cis-N2S4 octa-hedron. The 3-methyl-pyridine mol-ecules reside in the channels aligned along the b axis, being held in place by methyl-ene-C-H⋯N(3-methyl-pyridine) and (3-methyl-pyridine)-C-H⋯π(pyrid-yl) inter-actions. Pyridyl-C-H⋯S and di-thio-carbamate-methyl-C-H⋯π(pyrid-yl) inter-actions provide connections between layers along the c axis.
  18. Lee SM, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):630-636.
    PMID: 28435737 DOI: 10.1107/S2056989017004790
    In the title isonicotinohydrazide hydrate, C14H12BrN3O2·H2O {systematic name: N'-[(1E)-1-(5-bromo-2-hy-droxy-phen-yl)ethyl-idene]pyridine-4-carbohydrazide monohydrate}, the central CN2O region of the organic mol-ecule is planar and the conformation about the imine-C=N bond is E. While an intra-molecular hy-droxy-O-H⋯N(imine) hydrogen bond is evident, the dihedral angle between the central residue and the benzene rings is 48.99 (9)°. Overall, the mol-ecule is twisted, as seen in the dihedral angle of 71.79 (6)° between the outer rings. In the crystal, hydrogen-bonding inter-actions, i.e. hydrazide-N-H⋯O(water), water-O-H⋯O(carbon-yl) and water-O-H⋯N(pyrid-yl), lead to supra-molecular ribbons along the a-axis direction. Connections between these, leading to a three-dimensional architecture, are mediated by Br⋯Br halogen bonding [3.5366 (3) Å], pyridyl-C-H⋯O(carbon-yl) as well as weak π-π inter-actions [inter-centroid separation between benzene rings = 3.9315 (12) Å]. The Hirshfeld surface analysis reveals the importance of hydrogen atoms in the supra-molecular connectivity as well as the influence of the Br⋯Br halogen bonding.
  19. Wardell JL, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):579-585.
    PMID: 28435725 DOI: 10.1107/S2056989017004352
    In the anion of the title salt hydrate, H5N2(+)·C7H5N2O4(-)·2H2O, the carboxyl-ate and nitro groups lie out of the plane of the benzene ring to which they are bound [dihedral angles = 18.80 (10) and 8.04 (9)°, respectively], and as these groups are conrotatory, the dihedral angle between them is 26.73 (15)°. An intra-molecular amino-N-H⋯O(carboxyl-ate) hydrogen bond is noted. The main feature of the crystal packing is the formation of a supra-molecular chain along the b axis, with a zigzag topology, sustained by charge-assisted water-O-H⋯O(carboxyl-ate) hydrogen bonds and comprising alternating twelve-membered {⋯OCO⋯HOH}2 and eight-membered {⋯O⋯HOH}2 synthons. Each ammonium-N-H atom forms a charge-assisted hydrogen bond to a water mol-ecule and, in addition, one of these forms a hydrogen bond with a nitro-O atom. The amine-N-H atoms form hydrogen bonds to carboxyl-ate-O and water-O atoms, and the amine N atom accepts a hydrogen bond from an amino-H atom. The hydrogen bonds lead to a three-dimensional architecture. An analysis of the Hirshfeld surface highlights the major contribution of O⋯H/H⋯O hydrogen bonding to the overall surface, i.e. 46.8%, compared with H⋯H contacts (32.4%).
  20. Kuan FS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Oct 01;73(Pt 10):1465-1471.
    PMID: 29250359 DOI: 10.1107/S2056989017012865
    The title phosphanegold(I) thiol-ate compound, [Au(C9H9N2O3S)(C21H21P)], is a second monoclinic polymorph (space group P21/c) that complements a previously reported Cc polymorph [Broker & Tiekink (2008 ▸). Acta Cryst. E64, m1582]. An SP donor set defines an approximately linear geometry about the gold atom in both forms. The key distinguishing feature between the present structure and the previously reported polymorph rests with the relative disposition of the thiol-ate ligand. In the title compound, the orientation is such to place the oxygen atom in close contact with the gold atom [Au⋯O = 2.915 (2) Å], in contrast to the aryl ring in the original polymorph. In the crystal, linear supra-molecular chains along the a-axis direction mediated by C-H⋯π and nitro-O⋯π inter-actions are found. These pack with no directional inter-actions between them. The analysis of the Hirshfeld surfaces for both forms of [Au(C9H9N3O3S)(C21H21P)] indicates quite distinctive inter-action profiles relating to the differences in inter-molecular contacts found in their respective crystals.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links