Displaying all 19 publications

Abstract:
Sort:
  1. Kamarudin SN, Iezhitsa I, Tripathy M, Alyautdin R, Ismail NM
    Acta Neurobiol Exp (Wars), 2020;80(1):1-18.
    PMID: 32214270
    Poly (lactide‑co‑glycolide) (PLGA) nanoparticles (NPs) are biodegradable carriers that participate in the transport of neuroprotective drugs across the blood brain barrier (BBB). Targeted brain‑derived neurotrophic factor (BDNF) delivery across the BBB could provide neuroprotection in brain injury. We tested the neuroprotective effect of PLGA nanoparticle‑bound BDNF in a permanent middle cerebral artery occlusion (pMCAO) model of ischemia in rats. Sprague‑Dawley rats were subjected to pMCAO. Four hours after pMCAO, two groups were intravenously treated with BDNF and NP‑BDNF, respectively. Functional outcome was assessed at 2 and 24 h after pMCAO, using the modified neurologic severity score (mNSS) and rotarod performance tests. Following functional assessments, rats were euthanized blood was taken to assess levels of the neurobiomarkers neuron‑specific enolase and S100 calcium‑binding protein β (S100β), and the brain was evaluated to measure the infarct volume. The NP‑BDNF‑treated group showed significant improvement in mNSS compared with pMCAO and BDNF‑treated groups and showed improved rotarod performance. The infarct volume in rats treated with NP‑BDNFs was also significantly smaller. These results were further corroborated by correlating differences in estimated NSE and S100β. NP‑BDNFs exhibit a significant neuroprotective effect in the pMCAO model of ischemia in rats.
  2. Talari MK, Abdul Majeed AB, Tripathi DK, Tripathy M
    Chem Pharm Bull (Tokyo), 2012;60(7):818-24.
    PMID: 22790812
    The application of nanomaterials has gained considerable momentum in various fields in recent years due to their high reactivity, excellent surface properties and quantum effects in the nanometer range. The properties of zinc oxide (ZnO) vary with its crystallite size or particle size and often nanocrystalline ZnO is seen to exhibit superior physical and chemical properties due to their higher surface area and modified electronic structure. ZnO nanoparticles are reported to exhibit strong bacterial inhibiting activity and silver (Ag) has been extensively used for its antimicrobial properties since ages. In this study, Ag doped ZnO nanoparticles were synthesized by mechanochemical processing in a high energy ball mill and investigated for antimicrobial activity. The nanocrystalline nature of zinc oxide was established by X-ray diffraction (XRD) studies. It is seen from the XRD data obtained from the samples, that crystallite size of the zinc oxide nanoparticles is seen to decrease with increasing Ag addition. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) data also supported the nanoparticle formation during the synthesis. The doped nanoparticles were subjected to antimicrobial investigation and found that both increase in Ag content and decrease in particle size contributed significantly towards antimicrobial efficiency. It was also observed that Ag doped ZnO nanoparticles possess enhanced antimicrobial potential than that of virgin ZnO against the studied microorganisms of Escherichia coli and Staphylococcus aureus.
  3. Affandi MM, Tripathy M, Majeed AB
    J Adv Pharm Technol Res, 2016 Jul-Sep;7(3):80-6.
    PMID: 27429926 DOI: 10.4103/2231-4040.184589
    Categorized as a Biopharmaceutics Classification System Class II drugs, atorvastatin (ATV) exhibits low aqueous solubility and bioavailability thus presenting an obstacle and great challenge to formulation researchers. Numerous studies are available in regard to the solubility enhancement of ATV, but very few actually describe this phenomenon in terms of thermodynamics and the solute-solvent interaction. Arginine (ARG) is an amino acid that has been reported to enhance the solubility of the highly insoluble wheat protein gluten through hydrogen bonding and π electron-cation interaction. To our knowledge, ARG has never been investigated as a solubility enhancement agent of aqueous insoluble drugs. Thus, this study aimed to elucidate the solute-solvent and solute-cosolute interactions and derive thermodynamic parameters that bolstered the solubility of ATV in the presence of ARG. We examined the electrolytic conductance and densities of ATV-ARG binary system covering the temperature ranging from 298.15 K to 313.15 K. Conductometric and volumetric parameters such as limiting molar conductance, association constants, limiting partial molar volumes, and expansibility values were calculated. Additionally, thermodynamic parameters (ΔG(0), ΔH(0), ΔS(0), and Es) involved in the association process of the solute in the aqueous solution of ARG were also determined.
  4. Affandi MMRMM, Tripathy M, Majeed ABA
    Curr Drug Deliv, 2018;15(1):77-86.
    PMID: 28322162 DOI: 10.2174/1567201814666170320144259
    BACKGROUND: Categorized as a Biopharmaceutics Classification System (BCS) Class II drugs, statin exhibit low aqueous solubility and bioavailability thus presenting an obstacle and great challenge to formulation researchers. This paper describes a de novo approach to enhance the aqueous solubility of one of the most commonly prescribed statins i.e., simvastatin (SMV) by forming a complex (SMV-ARG) with cosolute arginine (ARG).

    METHODS: The complex has been characterized for its apparent solubility and in vitro dissolution. The solid state characterization has been carried out using Fourier Transform Infra-Red (FTIR) Spectroscopy, Elemental Analysis, X-Ray Powder Diffraction (XRD), Differential Scanning Calorimetry (DSC) analysis, Thermal Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM).

    RESULTS: Simvastatin-Arginine (SMV-ARG) complex exhibited massive solubility enhancement by 12,000 fold and significant improvement in both acidic and alkaline dissolution media. A conversion of coherent crystalline to non-coherent pattern, and certain extent of amorphization in SMV-ARG complex, fully justifies the enhanced solubility, and hence the dissolution profile.

    CONCLUSION: The present study provides a significant evidence that ARG molecules are capable to form a complex with small molecules and increase their aqueous solubility which prove to be beneficial in drug formulation and development.

  5. Giri TK, Choudhary C, Alexander A, Ajazuddin, Badwaik H, Tripathy M, et al.
    Indian J Pharm Sci, 2013 Nov;75(6):619-27.
    PMID: 24591735
    Interpenetrating polymer network hydrogel beads of pectin and sodium carboxymethyl xanthan were prepared by ionotropic gelation with Al(+3) ions and covalent cross-linking with glutaraldehyde for sustained delivery of diltiazem hydrochloride. Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning colorimetry and scanning electron microscopy were used to characterise the hydrogel beads. The swelling of the hydrogel and the release of drug were relatively low in pH 1.2 buffer solutions. However, higher swelling and drug release were observed in pH 6.8 buffer solutions. The carboxyl functional groups of hydrogels undergo ionisation and the osmotic pressure inside the beads increases resulting in higher swelling and drug release in higher pH. The release of drug depends on concentration of polymer, amount and exposure time of cross-linker and drug content in the hydrogel matrices. The present study indicated that the hydrogel beads minimised the drug release in pH 1.2 buffer solutions and to prolong the drug release in pH 6.8 buffer solutions.
  6. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    Eur J Pharm Sci, 2015 Apr 5;70:22-8.
    PMID: 25619806 DOI: 10.1016/j.ejps.2015.01.006
    Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique. An open trial was conducted using fullerene nanoemulsion on skin twice a day for 28 days. The mean collagen score significantly increased (P<0.05) from 36.53±4.39 to 48.69±5.46 with 33.29% increment at the end of the treatment. Biophysical characteristics of skin revealed that skin hydration was increased significantly (P<0.05) from 40.91±7.01 to 58.55±6.08 corneometric units (43.12% increment) and the water was able to contain within the stratum corneum without any increased in transepidermal water loss. In the in vitro safety evaluation, fullerene nanoemulsion showed no acute toxicity on 3T3 fibroblast cell line for 48h and no indication of potential dermal irritation. Hence, the fullerene nanoemulsion may assist in protecting collagen from breakdown with cosmeceutical benefit.
  7. Ngan CL, Basri M, Tripathy M, Abedi Karjiban R, Abdul-Malek E
    ScientificWorldJournal, 2014;2014:219035.
    PMID: 25165736 DOI: 10.1155/2014/219035
    Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer. Oil-in-water (O/W) nanoemulsions with particle sizes in the range of 70-160 nm were formed. The rheological characteristics of colloidal systems exhibited shear thinning behavior which fitted well into the power law model. The effect of xanthan gum (0.2-1.0%, w/w) and beeswax (1-3%, w/w) in the estimation of thermodynamics was further studied. From the energetic parameters calculated for the viscous flow, a moderate energy barrier for transport process was observed. Thermodynamic study showed that the enthalpy was positive in all xanthan gum and beeswax concentrations indicating that the formation of nanoemulsions could be endothermic in nature. Fullerene nanoemulsions with 0.6% or higher xanthan gum content were found to be stable against creaming and flocculation when exposed to extreme environmental conditions.
  8. Ngan CL, Basri M, Lye FF, Fard Masoumi HR, Tripathy M, Karjiban RA, et al.
    Int J Nanomedicine, 2014;9:4375-86.
    PMID: 25258528 DOI: 10.2147/IJN.S65689
    This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box-Behnken design and central composite rotatable design. An investigation on the effect of the homogenization rate (4,000-5,000 rpm), sonication amplitude (20%-60%), and sonication time (30-150 seconds) on the particle size, ζ-potential, and viscosity of the colloidal systems was conducted. Under the optimum conditions, the central composite rotatable design model suggested the response variables for particle size, ζ-potential, and viscosity of the fullerene nanoemulsion were 152.5 nm, -52.6 mV, and 44.6 pascal seconds, respectively. In contrast, the Box-Behnken design model proposed that preparation under the optimum condition would produce nanoemulsion with particle size, ζ-potential, and viscosity of 148.5 nm, -55.2 mV, and 39.9 pascal seconds, respectively. The suggested process parameters to obtain optimum formulation by both models yielded actual response values similar to the predicted values with residual standard error of <2%. The optimum formulation showed more elastic and solid-like characteristics due to the existence of a large linear viscoelastic region.
  9. Meor Mohd Affandi MM, Tripathy M, Shah SA, Majeed AB
    Drug Des Devel Ther, 2016;10:959-69.
    PMID: 27041998 DOI: 10.2147/DDDT.S94701
    We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.
  10. Kumar S, Fazil MHUT, Ahmad K, Tripathy M, Rajapakse JC, Verma NK
    Methods Mol Biol, 2019;1930:149-156.
    PMID: 30610609 DOI: 10.1007/978-1-4939-9036-8_18
    Analysis of protein-protein interactions is important for better understanding of molecular mechanisms involved in immune regulation and has potential for elaborating avenues for drug discovery targeting T-cell motility. Currently, only a small fraction of protein-protein interactions have been characterized in T-lymphocytes although there are several detection methods available. In this regard, computational approaches garner importance, with the continued explosion of genomic and proteomic data, for handling protein modeling and protein-protein interactions in large scale. Here, we describe a computational method to identify protein-protein interactions based on in silico protein design.
  11. Razali N, Agarwal R, Agarwal P, Kumar S, Tripathy M, Vasudevan S, et al.
    Clin Exp Ophthalmol, 2015 Jan-Feb;43(1):54-66.
    PMID: 24995479 DOI: 10.1111/ceo.12375
    BACKGROUND: Steroid-induced ocular hypertension is currently treated in the same way as primary open-angle glaucoma. However, the treatment is often suboptimal and is associated with adverse effects. We evaluated the oculohypotensive effects of topical trans-resveratrol in rats with steroid-induced ocular hypertension and involvement of adenosine receptors (AR) in intraocular pressure (IOP) lowering effect of trans-resveratrol.
    METHODS: The oculohypotensive effect of unilateral single-drop application of various concentrations of trans-resveratrol was first studied in oculonormotensive rats. Concentration with maximum effect was similarly studied in rats with steroid-induced ocular hypertension. Involvement of AR was studied by observing the alterations of IOP in response to trans-resveratrol after pretreating animals with AR subtype-specific antagonists. Additionally, we used computational methods, including 3D modelling, 3D structure generation and protein-ligand interaction, to determine the AR-trans-resveratrol interaction.
    RESULTS: All concentrations of trans-resveratrol produced significant IOP reduction in normotensive rat eyes. Maximum mean IOP reduction of 15.1% was achieved with trans-resveratrol 0.2%. In oculohypertensive rats, trans-resveratrol 0.2% produced peak IOP reduction of 25.2%. Pretreatment with A₁ antagonist abolished the oculohypotensive effect of trans-resveratrol. Pretreatment with A₃ and A₂A AR antagonists produced significant IOP reduction in both treated and control eyes, which was further augmented by trans-resveratrol application in treated eyes. Computational studies showed that trans-resveratrol has highest affinity for A₂B and A₁, followed by A2A and A₃ AR.
    CONCLUSION: Topically applied trans-resveratrol reduces IOP in rats with steroid-induced ocular hypertension. Trans-resveratrol-induced oculohypotension involves its agonistic activity at the A₁ AR.
    KEYWORDS: adenosine receptors; docking simulation; intraocular pressure; resveratrol; topical
  12. Afiqah RN, Paital B, Kumar S, Majeed AB, Tripathy M
    J. Mol. Recognit., 2016 11;29(11):544-554.
    PMID: 27406464 DOI: 10.1002/jmr.2554
    The inhibitory role of AgNO3 on glucose-mediated respiration in Escherichia coli has been investigated as a function of pH and temperature using Clark-type electrode, environmental scanning electron microscopy, and computational tools. In the given concentration of bacterial suspension (1 × 10(8)  CFU/ml), E. coli showed an increasing nonlinear trend of tetra-phasic respiration between 1-133 μM glucose concentration within 20 min. The glucose concentrations above 133 μM did not result any linear increment in respiration but rather showed a partial inhibition at higher glucose concentrations (266-1066 μM). In the presence of glucose, AgNO3 caused a concentration-dependent (47-1960 μM) inhibition of the respiration rate within 4 min of its addition. The respiration rate was the highest at pH 7-8 and then was decreased on either side of this pH range. The inhibitory action of AgNO3 upon bacterial respiration was the highest at 37 °C. The observations of the respiration data were well supported by the altered bacterial morphology as observed in electron microscopic study. Docking study indicated the AgNO3 binding to different amino acids of all respiratory complex enzymes in E. coli and thereby explaining its interference with the respiratory chain. Copyright © 2016 John Wiley & Sons, Ltd.
  13. Chik MW, Hussain Z, Zulkefeli M, Tripathy M, Kumar S, Majeed ABA, et al.
    Drug Deliv Transl Res, 2019 04;9(2):578-594.
    PMID: 29594914 DOI: 10.1007/s13346-018-0505-9
    Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.
  14. Razali N, Agarwal R, Agarwal P, Froemming GRA, Tripathy M, Ismail NM
    Eur J Pharmacol, 2018 Nov 05;838:1-10.
    PMID: 30171854 DOI: 10.1016/j.ejphar.2018.08.035
    Trans-resveratrol was earlier shown to lower intraocular pressure (IOP) in rats; however, its mechanisms of action remain unclear. It has been shown to modulate adenosine receptor (AR) and TGF-β2 signaling, both of which play a role in regulating IOP. Hence, we investigated effects of trans-resveratrol on AR and TGF-β2 signaling. Steroid-induced ocular hypertensive (SIOH) rats were pretreated with A1AR, phospholipase C (PLC) and ERK1/2 inhibitors and were subsequently treated with single drop of trans-resveratrol. Metalloproteinases (MMP)-2 and -9 were measured in aqueous humor (AH). In another set of experiments, effect of trans-resveratrol on AH level of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) was determined after single and multiple drop administration in SIOH rats. Effect of trans-resveratrol on ARs expression, PLC and pERK1/2 activation and MMPs, tPA and uPA secretion was determined using human trabecular meshwork cells (HTMC). Further, effect of trans-resveratrol on TGF-β2 receptors, SMAD signaling molecules and uPA and tPA expression by HTMC was determined in the presence and absence of TGF-β2. Pretreatment with A1AR, PLC and ERK1/2 inhibitors antagonized the IOP lowering effect of trans-resveratrol and caused significant reduction in the AH level of MMP-2 in SIOH rats. Trans-resveratrol increased A1AR and A2AAR expression, cellular PLC, pERK1/2 levels and MMP-2, tPA and uPA secretion by HTMC. Additionally, it produced TGFβRI downregulation and SMAD 7 upregulation. In conclusion, IOP lowering effect of trans-resveratrol involves upregulation of A1AR expression, PLC and ERK1/2 activation and increased MMP-2 secretion. It downregulates TGFβRI and upregulates SMAD7 hence, inhibits TGF-β2 signaling.
  15. Pandey M, Choudhury H, Gunasegaran TAP, Nathan SS, Md S, Gorain B, et al.
    Drug Deliv Transl Res, 2019 04;9(2):520-533.
    PMID: 29488170 DOI: 10.1007/s13346-018-0480-1
    Atopic dermatitis (AD) is a chronically relapsing eczematous skin disease characterised by frequent episodes of rashes, severe flares, and inflammation. Till date, there is no absolute therapy for the treatment of AD; however, topical corticosteroids (TCs) are the majorly prescribed class of drugs for the management of AD in both adults and children. Though, topical route is most preferable; however, limited penetration of therapeutics across the startum cornum (SC) is one of the major challenges for scientists. Therefore, the present study was attempted to fabricate a moderate-potency TC, betamethasone valerate (BMV), in the form of chitosan nanoparticles (CS-NPs) for optimum dermal targeting and improved penetration across the SC. To further improve the targeting efficiency of BMV and to potentiate its therapeutic efficacy, the fabricated BMV-CS-NPs were coated with hyaluronic acid (HA). The prepared NPs were characterised for particle size, zeta potential, polydispersity index (PDI), entrapment efficiency, loading capacity, crystallinity, thermal behaviour, morphology, in vitro release kinetics, drug permeation across the SC, and percentage of drug retained into various skin layers. Results showed that optimised HA-BMV-CS-NPs exhibited optimum physicochemical characteristics including finest particle size (
  16. Abdul Nasir NA, Agarwal R, Vasudevan S, Tripathy M, Alyautdin R, Ismail NM
    Mol Vis, 2014;20:822-35.
    PMID: 24940038
    Oxidative and nitrosative stress underlies cataractogenesis, and therefore, various antioxidants have been investigated for anticataract properties. Several vitamin E analogs have also been studied for anticataract effects due to their antioxidant properties; however, the anticataract properties of tocotrienols have not been investigated. In this study, we investigated the effects of topically applied tocotrienol on the onset and progression of cataract and lenticular oxidative and nitrosative stress in galactosemic rats.
  17. Razali N, Agarwal R, Agarwal P, Tripathy M, Kapitonova MY, Kutty MK, et al.
    Exp Eye Res, 2016 Feb;143:9-16.
    PMID: 26424219 DOI: 10.1016/j.exer.2015.09.014
    Steroid-induced hypertension and glaucoma is associated with increased extracellular meshwork (ECM) deposition in trabecular meshwork (TM). Previous studies have shown that single drop application of trans-resveratrol lowers IOP in steroid-induced ocular hypertensive (SIOH) rats. This IOP lowering is attributed to activation of adenosine A1 receptors, which may lead to increased matrix metalloproteinase (MMP)-2 activity. This study evaluated the effect of repeated topical application of trans-resveratrol for 21 days in SIOH animals on IOP, changes in MMP-2 level in aqueous humor, trabecular meshwork and retinal morphology and retinal redox status. We observed that treatment with trans-resveratrol results in significant and sustained IOP reduction in SIOH rats. This IOP reduction is associated with significantly higher aqueous humor total MMP-2 level; significantly reduced TM thickness and increased number of TM cells. Treatment with trans-resveratrol also significantly increased ganglion cell layer (GCL) thickness, the linear cell density in the GCL and inner retina thickness; and significantly reduced retinal oxidative stress compared to the SIOH vehicle-treated group. In conclusion, repeated dose topical application of trans-resveratrol produces sustained IOP lowering effect, which is associated with increased level of aqueous humor MMP-2, normalization of TM and retinal morphology and restoration of retinal redox status.
  18. Shao M, Hussain Z, Thu HE, Khan S, Katas H, Ahmed TA, et al.
    Colloids Surf B Biointerfaces, 2016 Nov 01;147:475-491.
    PMID: 27592075 DOI: 10.1016/j.colsurfb.2016.08.027
    Atopic dermatitis (AD) is a chronically relapsing skin inflammatory disorder characterized by perivascular infiltration of immunoglobulin-E (IgE), T-lymphocytes and mast cells. The key pathophysiological factors causing this disease are immunological disorders and the compromised epidermal barrier integrity. Pruritus, intense itching, psychological stress, deprived physical and mental performance and sleep disturbance are the hallmark features of this dermatological complication. Preventive interventions which include educational programs, avoidance of allergens, exclusive care towards skin, and the rational selection of therapeutic regimen play key roles in the treatment of dermatosis. In last two decades, it is evident from a plethora of studies that scientific focus is being driven from conventional therapies to the advanced nanocarrier-based regimen for an effective management of AD. These nanocarriers which include polymeric nanoparticles (NPs), hydrogel NPs, liposomes, ethosomes, solid lipid nanoparticles (SLNs) and nanoemulsion, provide efficient roles for the target specific delivery of the therapeutic payload. The success of these targeted therapies is due to their pharmaceutical versatility, longer retention time at the target site, avoiding off-target effects and preventing premature degradation of the incorporated drugs. The present review was therefore aimed to summarise convincing evidence for the therapeutic superiority of advanced nanocarrier-mediated strategies over the conventional therapies used in the treatment of AD.
  19. Abdul Nasir NA, Agarwal R, Sheikh Abdul Kadir SH, Vasudevan S, Tripathy M, Iezhitsa I, et al.
    PLoS One, 2017;12(3):e0174542.
    PMID: 28350848 DOI: 10.1371/journal.pone.0174542
    Cataract, a leading cause of blindness, is of special concern in diabetics as it occurs at earlier onset. Polyol accumulation and increased oxidative-nitrosative stress in cataractogenesis are associated with NFκB activation, iNOS expression, ATP depletion, loss of ATPase functions, calpain activation and proteolysis of soluble to insoluble proteins. Tocotrienol was previously shown to reduce lens oxidative stress and inhibit cataractogenesis in galactose-fed rats. In current study, we investigated anticataract effects of topical tocotrienol and possible mechanisms involved in streptozotocin-induced diabetic rats. Diabetes was induced in Sprague Dawley rats by intraperitoneal injection of streptozotocin. Diabetic rats were treated with vehicle (DV) or tocotrienol (DT). A third group consists of normal, non-diabetic rats were treated with vehicle (NV). All treatments were given topically, bilaterally, twice daily for 8 weeks with weekly slit lamp monitoring. Subsequently, rats were euthanized and lenses were subjected to estimation of polyol accumulation, oxidative-nitrosative stress, NFκB activation, iNOS expression, ATP levels, ATPase activities, calpain activity and total protein levels. Cataract progression was delayed from the fifth week onwards in DT with lower mean of cataract stages compared to DV group (p<0.01) despite persistent hyperglycemia. Reduced cataractogenesis in DT group was accompanied with lower aldose reductase activity and sorbitol level compared to DV group (p<0.01). DT group also showed reduced NFκB activation, lower iNOS expression and reduced oxidative-nitrosative stress compared to DV group. Lenticular ATP and ATPase and calpain 2 activities in DT group were restored to normal. Consequently, soluble to insoluble protein ratio in DT group was higher compared to DV (p<0.05). In conclusion, preventive effect of topical tocotrienol on development of cataract in STZ-induced diabetic rats could be attributed to reduced lens aldose reductase activity, polyol levels and oxidative-nitrosative stress. These effects of tocotrienol invlove reduced NFκB activation, lower iNOS expression, restoration of ATP level, ATPase activities, calpain activity and lens protein levels.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links