Displaying all 14 publications

Abstract:
Sort:
  1. Altaf R, Asmawi MZ, Dewa A, Sadikun A, Umar MI
    Pharmacogn Rev, 2013 Jan;7(13):73-80.
    PMID: 23922460 DOI: 10.4103/0973-7847.112853
    Phaleria macrocarpa, commonly known as Mahkota dewa is a medicinal plant that is indigenous to Indonesia and Malaysia. Extracts of P. macrocarpa have been used since years in traditional medicine that are evaluated scientifically as well. The extracts are reported for a number of valuable medicinal properties such as anti-cancer, anti-diabetic, anti-hyperlipidemic, anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant and vasorelaxant effect. The constituents isolated from different parts of P. macrocarpa include Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetylflavicordin-A, flavicordin-A, flavicordin-D, flavicordin-A glucoside, ethyl stearate, lignans, alkaloids andsaponins. The present review is an up-to-date summary of occurrence, botanical description, ethnopharmacology, bioactivity and toxicological studies related to P. macrocarpa.
  2. Abdullahi UF, Igwenagu E, Mu'azu A, Aliyu S, Umar MI
    Vet World, 2016 Jan;9(1):12-8.
    PMID: 27051178 DOI: 10.14202/vetworld.2016.12-18
    Biofilm has a tremendous impact in the field of veterinary medicine, especially the livestock industry, leading to a serious economic loss. Over the years, little attention has been given to biofilm in animals with most of the research geared toward human biofilm diseases. The greatest challenge posed by biofilm is in its incredible ability to resist most of the currently existing antibiotics. This mystery can best be demystified through understanding the mechanism of the quorum sensing which regulate the pathophysiology of biofilm. Ability of biofilm formation in a variety of inanimate surfaces such as animal food contact surfaces is responsible for a host of biofilm diseases affecting animals and humans. In this review, we highlighted some of the challenges of biofilm in livestock and food industries. Also highlighted are; mechanisms of biofilm development, best diagnostic approach and possible novel therapeutic measures needed to combat the menace of biofilm in veterinary medicine.
  3. Atangwho IJ, Yin KB, Umar MI, Ahmad M, Asmawi MZ
    PMID: 25358757 DOI: 10.1186/1472-6882-14-426
    This study evaluated the impact of Vernonia amygdalina (VA) on the transcription of key enzymes involved in cellular modulation of glucose in streptozotocin-induced diabetic rats in a bid to understand the possible anti-diabetic mechanism of VA.
  4. Umar MI, Asmawi MZ, Sadikun A, Atangwho IJ, Yam MF, Altaf R, et al.
    Molecules, 2012 Jul 23;17(7):8720-34.
    PMID: 22825623 DOI: 10.3390/molecules17078720
    This study evaluated the anti-inflammatory effect of Kaempferia galanga (KG) using an activity-guided approach. KG rhizomes were serially extracted with petroleum ether, chloroform, methanol and water. These extracts (2 g/kg each) were tested for their ability to inhibit carrageenan-induced rat paw edema. The chloroform extract was found to exert the highest inhibition (42.9%) compared to control (p < 0.001), hence it was further fractionated by washing serially with hexane, hexane-chloroform (1:1) and chloroform. The chloroform fraction (1 g/kg) showed the highest inhibitory effect (51.9%, (p < 0.001), on carrageenan-induced edema. This chloroform fraction was further fractionated with hexane-chloroform (1:3) and chloroform, and of the two fractions, the hexane-chloroform sub-fraction was the most effective in inhibiting edema (53.7%, p < 0.001). GC-MS analysis of the active sub-fraction identified ethyl-p-methoxycinnamate (EPMC) as the major component, which was re-crystallized. EPMC dose-dependently inhibited carrageenan-induced edema with an MIC of 100 mg/kg. Moreover, in an in vitro study, EPMC non-selectively inhibited the activities of cyclooxygenases 1 and 2, with IC₅₀ values of 1.12 µM and 0.83 µM respectively. These results validate the anti-inflammatory activity of KG which may be exerted by the inhibition of cyclooxygenases 1 and 2. EPMC isolated from this plant may be the active anti-inflammatory agent.
  5. Iqbal MA, Umar MI, Haque RA, Khadeer Ahamed MB, Asmawi MZ, Majid AM
    J Inorg Biochem, 2015 May;146:1-13.
    PMID: 25699476 DOI: 10.1016/j.jinorgbio.2015.02.001
    Chronic inflammation intensifies the risk for malignant neoplasm, indicating that curbing inflammation could be a valid strategy to prevent or cure cancer. Cancer and inflammation are inter-related diseases and many anti-inflammatory agents are also used in chemotherapy. Earlier, we have reported a series of novel ligands and respective binuclear Ag(I)-NHC complexes (NHC=N-heterocyclic carbene) with potential anticancer activity. In the present study, a newly synthesized salt (II) and respective Ag(I)-NHC complex (III) of comparable molecular framework were prepared for a further detailed study. Preliminarily, II and III were screened against HCT-116 and PC-3 cells, wherein III showed better results than II. Both the compounds showed negligible toxicity against normal CCD-18Co cells. In FAM-FLICA caspase assay, III remarkably induced caspase-3/7 in HCT-116 cells most probably by tumor necrosis factor-alpha (TNF-α) independent intrinsic pathway and significantly inhibited in vitro synthesis of cytokines, interleukin-1 (IL-1) and TNF-α in human macrophages (U937 cells). In a cell-free system, both the compounds inhibited cyclooxygenase (COX) activities, with III being more selective towards COX-2. The results revealed that III has strong antiproliferative property selectively against colorectal tumor cells which could be attributed to its pro-apoptotic and anti-inflammatory abilities.
  6. Seow LJ, Beh HK, Umar MI, Sadikun A, Asmawi MZ
    Int Immunopharmacol, 2014 Nov;23(1):186-91.
    PMID: 25194675 DOI: 10.1016/j.intimp.2014.08.020
    Gynura segetum, family Compositae, is a cultivated species and can be found growing in the tropical regions of Indonesia and Malaysia. The plant is known for its use for the treatment of cancer, inflammation, diabetes, hypertension and skin afflictions. In the current study, in vivo anti-inflammatory effect of the methanol extract G. segetum leaf and its antioxidant effect in vitro have been investigated for the first time. The in vitro antioxidant activities of the methanol extract were measured using common methods including total phenolic content; total flavonoid content; scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching assays. The in vivo anti-inflammatory activities were tested using the cotton pellet implanted animal model. The measurement of pro-inflammatory cytokine (TNF-α and IL-1) levels in the blood samples of the rats was carried out by using ELISA kits. The inhibitory activity on cyclooxygenase (COX) enzyme of methanol extract was also evaluated. The methanol extract exhibited good antioxidant activity which is associated with their total phenolic and flavonoid contents. Methanol extract strongly inhibited the granuloma tissue formation in rats and the anti-inflammatory potential was mediated through the inhibition of pro-inflammatory cytokines and COX-2 enzyme activities. Taken together, the present study suggests that G. segetum's leaf is a natural source of antioxidants and has potential therapeutic benefits against chronic inflammation.
  7. Umar MI, Hassan W, Murtaza G, Buabeid M, Arafa E, Irfan HM, et al.
    Pathol Oncol Res, 2021;27:1609828.
    PMID: 34588926 DOI: 10.3389/pore.2021.1609828
    A hormonal imbalance may disrupt the rigorously monitored cellular microenvironment by hampering the natural homeostatic mechanisms. The most common example of such hormonal glitch could be seen in obesity where the uprise in adipokine levels is in virtue of the expanding bulk of adipose tissue. Such aberrant endocrine signaling disrupts the regulation of cellular fate, rendering the cells to live in a tumor supportive microenvironment. Previously, it was believed that the adipokines support cancer proliferation and metastasis with no direct involvement in neoplastic transformations and tumorigenesis. However, the recent studies have reported discrete mechanisms that establish the direct involvement of adipokine signaling in tumorigenesis. Moreover, the individual adipokine profile of the patients has never been considered in the prognosis and staging of the disease. Hence, the present manuscript has focused on the reported extensive mechanisms that culminate the basis of poor prognosis and diminished survival rate in obese cancer patients.
  8. Umar MI, Asmawi MZ, Sadikun A, Abdul Majid AM, Atangwho IJ, Khadeer Ahamed MB, et al.
    Pharm Biol, 2014 Nov;52(11):1411-22.
    PMID: 25026347 DOI: 10.3109/13880209.2014.895017
    Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures.
  9. Md Saad SK, Ali Umar A, Ali Umar MI, Tomitori M, Abd Rahman MY, Mat Salleh M, et al.
    ACS Omega, 2018 Mar 31;3(3):2579-2587.
    PMID: 31458546 DOI: 10.1021/acsomega.8b00109
    This paper reports the synthesis of two-dimensional, hierarchical, porous, and (001)-faceted metal (Ag, Zn, and Al)-doped TiO2 nanostructures (TNSs) and the study of their photocatalytic activity. Two-dimensional metal-doped TNSs were synthesized using the hydrolysis of ammonium hexafluorotitanate in the presence of hexamethylenetetramine and metal precursors. Typical morphology of metal-doped TNSs is a hierarchical nanosheet that is composed of randomly stacked nanocubes (dimensions of up to 5 μm and 200 nm in edge length and thickness, respectively) and has dominant (001) facets exposed. Raman analysis and X-ray photoelectron spectroscopy results indicated that the Ag doping, compared to Zn and Al, much improves the crystallinity degree and at the same time dramatically lowers the valence state binding energy of the TNS and provides an additional dopant oxidation state into the system for an enhanced electron-transfer process and surface reaction. These are assumed to enhance the photocatalytic of the TNS. In a model of photocatalytic reaction, that is, rhodamine B degradation, the AgTNS demonstrates a high photocatalytic activity by converting approximately 91% of rhodamine B within only 120 min, equivalent to a rate constant of 0.018 m-1 and ToN and ToF of 94 and 1.57 min-1, respectively, or 91.1 mmol mg-1 W-1 degradation when normalized to used light source intensity, which is approximately 2 times higher than the pristine TNS and several order higher when compared to Zn- and Al-doped TNSs. Improvement of the crystallinity degree, decrease in the defect density and the photogenerated electron and hole recombination, and increase of the oxygen vacancy in the AgTNS are found to be the key factors for the enhancement of the photocatalytic properties. This work provides a straightforward strategy for the preparation of high-energy (001) faceted, two-dimensional, hierarchical, and porous Ag-doped TNSs for potential use in photocatalysis and photoelectrochemical application.
  10. Hassan LE, Dahham SS, Fadul SM, Umar MI, Majid AS, Khaw KY, et al.
    J Ethnopharmacol, 2016 Aug 20.
    PMID: 27553975 DOI: 10.1016/j.jep.2016.08.023
    Tephrosia apollinea (Delile) DC (Leguminosae) has been used in folk medicine in Arabian countries to treat inflammatory disorders. The plant has been described to treat swelling, bone fracture, bronchitis, cough, earache and wounds.
  11. Alias N, Ali Umar A, Sadikin SN, Ridwan J, Hamzah AA, Ali Umar MI, et al.
    ACS Omega, 2023 May 30;8(21):18874-18881.
    PMID: 37273642 DOI: 10.1021/acsomega.3c01236
    Perovskite solar cells have emerged as a potential energy alternative due to their low cost of fabrication and high power conversion efficiency. Unfortunately, their poor ambient stability has critically limited their industrialization and application in real environmental conditions. Here, we show that by introducing hexamine molecules into the perovskite lattice, we can enhance the photoactive phase stability, enabling high-performance and air-processable perovskite solar cells. The unencapsulated and freshly prepared perovskite solar cells produce a power conversion efficiency of 16.83% under a 100 mW cm-2 1.5G solar light simulator and demonstrate high stability properties when being stored for more than 1500 h in humid air with relative humidity ranging from 65 to 90%. We envisage that our findings may revolutionize perovskite solar cell research, pushing the performance and stability to the limit and bringing the perovskite solar cells toward industrialization.
  12. Umar MI, Asmawi MZ, Sadikun A, Majid AM, Al-Suede FS, Hassan LE, et al.
    Clinics (Sao Paulo), 2014 Feb;69(2):134-44.
    PMID: 24519205 DOI: 10.6061/clinics/2014(02)10
    The present study aimed to investigate the mechanisms underlying the anti-inflammatory and anti-angiogenic effects of ethyl-p-methoxycinnamate isolated from Kaempferia galanga.
  13. Jafari SF, Khadeer Ahamed MB, Iqbal MA, Al Suede FS, Khalid SH, Haque RA, et al.
    J Pharm Pharmacol, 2014 Oct;66(10):1394-409.
    PMID: 25039905 DOI: 10.1111/jphp.12272
    Recently, we have isolated koetjapic acid (KA) from Sandoricum koetjape and identified its selective anticancer potentiality against colorectal carcinoma. KA is quite likely to be useful as a systemic anticancer agent against colorectal malignancy. However, with extremely low solubility, KA has to be converted into a biocompatible solubilized form without compromising the bioefficacy. Objective of this study is to enhance solubility of KA and to evaluate anticancer efficacy of potassium koetjapate in human colorectal cancer cells.
  14. Ali Umar MI, Ahdaliza AZ, El-Bahy SM, Aliza N, Sadikin SN, Ridwan J, et al.
    Nanomaterials (Basel), 2023 Apr 05;13(7).
    PMID: 37049374 DOI: 10.3390/nano13071281
    The crystallinity properties of perovskite influence their optoelectrical performance in solar cell applications. We optimized the grain shape and crystallinity of perovskite film by annealing treatment from 130 to 170 °C under high humidity (relative humidity of 70%). We found that the grain size, grain interface, and grain morphology of the perovskite are optimized when the sample was annealed at 150 °C for 1 h in the air. At this condition, the perovskite film is composed of 250 nm crystalline shape grain and compact inter-grain structure with an invincible grain interface. Perovskite solar cells device analysis indicated that the device fabricated using the samples annealed at 150 °C produced the highest power conversion efficiency, namely 17.77%. The open circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) of the device are as high as 1.05 V, 22.27 mA/cm2, and 0.76, respectively. Optoelectrical dynamic analysis using transient photoluminescence and electrochemical impedance spectroscopies reveals that (i) carrier lifetime in the champion device can be up to 25 ns, which is almost double the carrier lifetime of the sample annealed at 130 °C. (ii) The interfacial charge transfer resistance is low in the champion device, i.e., ~20 Ω, which has a crystalline grain morphology, enabling active photocurrent extraction. Perovskite's behavior under annealing treatment in high humidity conditions can be a guide for the industrialization of perovskite solar cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links