Displaying all 3 publications

Abstract:
Sort:
  1. Vallance TM, Ravishankar D, Albadawi DAI, Layfield H, Sheard J, Vaiyapuri R, et al.
    Sci Rep, 2019 12 03;9(1):18258.
    PMID: 31796818 DOI: 10.1038/s41598-019-54617-w
    Platelets are small circulating blood cells that play essential roles in the maintenance of haemostasis via blood clotting. However, they also play critical roles in the regulation of innate immune responses. Inflammatory receptors, specifically Toll-like receptor (TLR)-4, have been reported to modify platelet reactivity. A plethora of studies have reported controversial functions of TLR4 in the modulation of platelet function using various chemotypes and preparations of its ligand, lipopolysaccharide (LPS). The method of preparation of LPS may explain these discrepancies however this is not fully understood. Hence, to determine the impact of LPS on platelet activation, we used ultrapure preparations of LPS from Escherichia coli (LPSEC), Salmonella minnesota (LPSSM), and Rhodobacter sphaeroides (LPSRS) and examined their actions under diverse experimental conditions in human platelets. LPSEC did not affect platelet activation markers such as inside-out signalling to integrin αIIbβ3 or P-selectin exposure upon agonist-induced activation in platelet-rich plasma or whole blood whereas LPSSM and LPSRS inhibited platelet activation under specific conditions at supraphysiological concentrations. Overall, our data demonstrate that platelet activation is not largely influenced by any of the ultrapure LPS chemotypes used in this study on their own except under certain conditions.
  2. Salamah MF, Ravishankar D, Kodji X, Moraes LA, Williams HF, Vallance TM, et al.
    Blood Adv, 2018 11 13;2(21):2973-2985.
    PMID: 30413433 DOI: 10.1182/bloodadvances.2018021758
    Platelet-associated complications including thrombosis, thrombocytopenia, and hemorrhage are commonly observed during various inflammatory diseases such as sepsis, inflammatory bowel disease, and psoriasis. Despite the reported evidence on numerous mechanisms/molecules that may contribute to the dysfunction of platelets, the primary mechanisms that underpin platelet-associated complications during inflammatory diseases are not fully established. Here, we report the discovery of formyl peptide receptor 2, FPR2/ALX, in platelets and its primary role in the development of platelet-associated complications via ligation with its ligand, LL37. LL37 acts as a powerful endogenous antimicrobial peptide, but it also regulates innate immune responses. We demonstrate the impact of LL37 in the modulation of platelet reactivity, hemostasis, and thrombosis. LL37 activates a range of platelet functions, enhances thrombus formation, and shortens the tail bleeding time in mice. By utilizing a pharmacological inhibitor and Fpr2/3 (an ortholog of human FPR2/ALX)-deficient mice, the functional dependence of LL37 on FPR2/ALX was determined. Because the level of LL37 is increased in numerous inflammatory diseases, these results point toward a critical role for LL37 and FPR2/ALX in the development of platelet-related complications in such diseases. Hence, a better understanding of the clinical relevance of LL37 and FPR2/ALX in diverse pathophysiological settings will pave the way for the development of improved therapeutic strategies for a range of thromboinflammatory diseases.
  3. Ravishankar D, Salamah M, Attina A, Pothi R, Vallance TM, Javed M, et al.
    Sci Rep, 2017 07 18;7(1):5738.
    PMID: 28720875 DOI: 10.1038/s41598-017-05936-3
    The constant increase in cardiovascular disease rate coupled with significant drawbacks of existing therapies emphasise the necessity to improve therapeutic strategies. Natural flavonoids exert innumerable pharmacological effects in humans. Here, we demonstrate the effects of chrysin, a natural flavonoid found largely in honey and passionflower on the modulation of platelet function, haemostasis and thrombosis. Chrysin displayed significant inhibitory effects on isolated platelets, however, its activity was substantially reduced under physiological conditions. In order to increase the efficacy of chrysin, a sulfur derivative (thio-chrysin), and ruthenium-complexes (Ru-chrysin and Ru-thio-chrysin) were synthesised and their effects on the modulation of platelet function were evaluated. Indeed, Ru-thio-chrysin displayed a 4-fold greater inhibition of platelet function and thrombus formation in vitro than chrysin under physiologically relevant conditions such as in platelet-rich plasma and whole blood. Notably, Ru-thio-chrysin exhibited similar efficacy to chrysin in the modulation of haemostasis in mice. Increased bioavailability and cell permeability of Ru-thio-chrysin compared to chrysin were found to be the basis for its enhanced activity. Together, these results demonstrate that Ru-thio-coupled natural compounds such as chrysin may serve as promising templates for the development of novel anti-thrombotic agents.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links