Displaying all 4 publications

Abstract:
Sort:
  1. Lee WPC, Wong FH, Attenborough NK, Kong XY, Tan LL, Sumathi S, et al.
    J Environ Manage, 2017 Jul 15;197:63-69.
    PMID: 28324782 DOI: 10.1016/j.jenvman.2017.03.027
    In the present work, two-dimensional bismuth oxybromide (BiOBr) was synthesized and coupled with co-catalyst molybdenum disulphide (MoS2) via a simple hydrothermal process. The photoactivity of the resulting hybrid photocatalyst (MoS2/BiOBr) was evaluated under the irradiation of 15 W energy-saving light bulb at ambient condition using Reactive Black 5 (RB5) as model dye solution. The photo-degradation of RB5 by BiOBr loaded with 0.2 wt% MoS2 (MoBi-2) exhibited more than 1.4 and 5.0 folds of enhancement over pristine BiOBr and titanium dioxide (Degussa, P25), respectively. The increased photocatalytic performance was a result of an efficient migration of excited electrons from BiOBr to MoS2, prolonging the electron-hole pairs recombination rate. A possible charge transfer diagram of this hybrid composite photocatalyst, and the reaction mechanism for the photodegradation of RB5 were proposed.
  2. Yap YH, Lim MSW, Lee ZY, Lai KC, Jamaal MA, Wong FH, et al.
    Ultrason Sonochem, 2018 Jan;40(Pt A):57-67.
    PMID: 28946460 DOI: 10.1016/j.ultsonch.2017.06.032
    The utilisation of ultrasound in chemical preparation has been the focus of intense study in various fields, including materials science and engineering. This paper presents a novel method of synthesising the copper-manganese oxide (Hopcalite) catalyst that is used for the removal of volatile organic compounds and greenhouse gases like carbon monoxide. Several samples prepared under different conditions, with and without ultrasound, were subjected to a series of characterisation tests such as XRD, BET, FE-SEM, EDX, TPR-H2, TGA and FT-IR in order to establish their chemical and physical properties. A series of catalytic tests using a micro-reactor were subsequently performed on the samples in order to substantiate the aforementioned properties by analysing their ability to oxidise compressed natural gas (CNG), containing methane and sulphur dioxide. Results showed that ultrasonic irradiation of the catalyst led to observable alterations in its morphology: surfaces of the particles were noticeably smoothed and an increased in amorphicity was detected. Furthermore, ultrasonic irradiation has shown to enhance the catalytic activity of Hopcalite, achieving a higher conversion of methane relative to non-sonicated samples. Varying the ultrasonic intensity also produced appreciable effects, whereby an increase in intensity results in a higher conversion rate. The catalyst sonicated at the highest intensity of 29.7W/cm2has a methane conversion rate of 13.5% at 400°C, which was the highest among all the samples tested.
  3. Toh WK, Kong ZH, Wong FH, Lim CC, Ho SH, Wong CKF, et al.
    Plant Dis, 2024 Jul 10.
    PMID: 38985510 DOI: 10.1094/PDIS-05-24-1093-PDN
    In Malaysia, bananas (Musa spp.) are the second most cultivated fruit and the fourth most cultivated fruit in terms of export revenue. In October 2018, about 5.0 out of 6.6 hectares of a banana plantation located in Teluk Intan, Malaysia, was impacted by an outbreak of banana disease. The onset of bacterial wilt symptoms is characterized by initial leaf wilting, followed by the subsequent withering of the entire plant during later stages, fruit stalk and fruit pulp discoloration, fruit rotting, and pseudostem necrosis. The diseased banana's symptomatic pseudostems and fruit pulps were surface-sterilised in 70% ethanol for 30 s, followed by 2% NaClO for 3 min, rinsed three times in sterilised water, and cut into small pieces approximately 5 mm2 in size. The tissues were macerated in a sterilised 0.85% NaCl solution for 5 min, and the resulting suspension was streaked onto nutrient agar, followed by incubation at 28°C for 2 days. After incubation, bacterial colonies with five unique morphological characteristics were observed. Two colonies of each unique morphological type were randomly chosen and subjected to preliminary bacterial identification by 16S rRNA gene sequencing. Based on BLASTn analysis, the five unique morphological types of bacteria were preliminarily identified as Enterobacter cloacae, Citrobacter farmeri, Klebsiella variicola, Kosakonia radicincitans, and Phytobacter ursingii. Previous reports identified K. variicola and K. radicincitans as banana pathogens, but Malaysia has yet to report the former. The amplified partial 16S rDNA sequences of both K. variicola isolates (designated as UTAR-BC1 and UTAR-BC2; GenBank accession numbers: PP531448 and PP531460, respectively), which were chosen to be the focus of this study, exhibited complete similarity to each other and were 100% identical (1426/1426 identity and 1420/1420 identity, respectively) to K. variicola (CP026013.1). To verify the identity of the bacterial isolate, three housekeeping genes, namely, infB(PP538994), rpoB (PP538995), and gyrB (PP538996) of UTAR-BC1, were amplified, sequenced, and subjected to multilocus phylogenetic analysis via the neighbour-joining method (1,000 bootstrap values). Phylogenetic analysis revealed that UTAR-BC1 belongs to the K. variicola clade. A pathogenicity assay of UTAR-BC1 was conducted on 4-month-old healthy banana plantlets (cv. Nangka) using the pseudostem injection method (Tripathi et al., 2008). First, UTAR-BC1 was grown overnight in nutrient broth and then adjusted to 108 CFU/ml in a sterile 10 mM MgCl2 solution. A total volume of 100 µL of the bacterial suspension was injected into the pseudostem of five healthy banana plantlets via a syringe with a needle. Control plants were mock-inoculated with a sterile 10 mM MgCl2 solution. The experiments were replicated thrice and inoculated plants were maintained at room temperature with natural sunlight and humidity, which resembled the field conditions. Two months after inoculation, all of the UTAR-BC1 inoculated spots of banana plantlets showed severe necrosis, while the banana leaves showed symptoms of wilted appearance, whereas the control plants remained symptomless. The reisolated pathogen from 90% of the symptomatic pseudostems and leaf blades shares the same morphological and molecular features as UTAR-BC1, thus fulfilling Koch's postulates. Previously, K. variicola has been reported to be a banana pathogen causing rhizome rot in India (Loganathan et al., 2021), plantain soft rot in Haiti (Fulton et al. 2020), and sheath rot and bulb rot in China (Sun et al., 2023; Jiang et al., 2024). To the best of our knowledge, this is the first report of bacterial wilt disease in bananas attributed to K. variicola in Malaysia. This finding will facilitate the surveillance of K. variicola as an emerging pathogen in banana plants in this region, thereby safeguarding the country's food security and promoting socio-economic growth.
  4. Ooi SE, Feshah I, Nuraziyan A, Sarpan N, Ata N, Lim CC, et al.
    Plant Cell Rep, 2021 Jul;40(7):1141-1154.
    PMID: 33929599 DOI: 10.1007/s00299-021-02698-1
    KEY MESSAGE: Potentially embryogenic oil palms can be identified through leaf transcriptomic signatures. Differential expression of genes involved in flowering time, and stress and light responses may associate with somatic embryogenesis potential. Clonal propagation is an attractive approach for the mass propagation of high yielding oil palms. A major issue hampering the effectiveness of oil palm tissue culture is the low somatic embryogenesis rate. Previous studies have identified numerous genes involved in oil palm somatic embryogenesis, but their association with embryogenic potential has not been determined. In this study, differential expression analysis of leaf transcriptomes from embryogenic and non-embryogenic mother palms revealed that transcriptome profiles from non- and poor embryogenic mother palms were more similar than highly embryogenic palms. A total of 171 genes exhibiting differential expression in non- and low embryogenesis groups could also discriminate high from poor embryogenesis groups of another tissue culture agency. Genes related to flowering time or transition such as FTIP, FRIGIDA-LIKE, and NF-YA were up-regulated in embryogenic ortets, suggesting that reproduction timing of the plant may associate with somatic embryogenesis potential. Several light response or photosynthesis-related genes were down-regulated in embryogenic ortets, suggesting a link between photosynthesis activity and embryogenic potential. As expression profiles of the differentially expressed genes are very similar between non- and low embryogenic groups, machine learning approaches with several candidate genes may generate a more sensitive model to better discriminate non-embryogenic from embryogenic ortets.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links