Displaying publications 1 - 20 of 106 in total

Abstract:
Sort:
  1. Wong TW
    J Control Release, 2014 Nov 10;193:257-69.
    PMID: 24801250 DOI: 10.1016/j.jconrel.2014.04.045
    Transdermal drug delivery is hindered by the barrier property of the stratum corneum. It limits the route to transport of drugs with a log octanol-water partition coefficient of 1 to 3, molecular weight of less than 500Da and melting point of less than 200°C. Active methods such as iontophoresis, electroporation, sonophoresis, magnetophoresis and laser techniques have been investigated for the past decades on their ability, mechanisms and limitations in modifying the skin microenvironment to promote drug diffusion and partition. Microwave, an electromagnetic wave characterized by frequencies range between 300MHz and 300GHz, has recently been reported as the potential skin permeation enhancer. Microwave has received a widespread application in food, engineering and medical sectors. Its potential use to facilitate transdermal drug transport is still in its infancy stage of evaluation. This review provides an overview and update on active methods utilizing electrical, magnetic, photomechanical and cavitational waves to overcome the skin barrier for transdermal drug administration with insights into mechanisms and future perspectives of the latest microwave technique described.
  2. Wong TW
    Recent Pat Drug Deliv Formul, 2011 Sep;5(3):227-43.
    PMID: 21834774
    Design of oral fast-release solid dispersion of poorly water-soluble drugs has been a great challenge over past decades on issues of drug recrystallization, drug polymorphism, formulation limited to low drug-to-carrier ratio and drug particle aggregation in matrix. The complexity in solid dispersion design is envisaged to be resolvable by the use of nanoparticulate system as solid dosage form. This manuscript reviews several patented processing approaches of nanoparticulate solid dispersion that have been reported recently. Through drug nanoencapsulation, a higher content of drug may be delivered with less aggregation via placing the same drug mass in a greater number of tinier carriers. Nanoencapsulation, by its own process of formation, brings about submicron particles. Keeping drug in these nanoparticles, a remarkable rise in specific surface area of drug is realized for dissolution. The augmentation of drug dissolution can be sufficiently high to the extent that the influences of polymorphism and crystallization phenomenon on drug dissolution in a solid dispersion may be negligible.
  3. Wong TW
    J Drug Target, 2010 Feb;18(2):79-92.
    PMID: 19968567 DOI: 10.3109/10611860903302815
    The possibility of administering insulin orally in replacement of painful subcutaneous route has been investigated over years but with varying degree of success. Nanoparticles, microparticles, hydrogel, capsule, tablet, and film patch are designed to deliver insulin orally. They are largely formulated with polymeric adhesive, protease inhibitor, insulin aggregation inhibitor, and functional excipients to induce transcellular, paracellular, Peyer's patches, or receptor-mediated transport of insulin in gastrointestinal tract. Superporous matrix, intestinal patches, and charged-coupled micromagnet microparticles are recent formulation strategies to promote oral insulin absorption. The formulation emphasizes on assembly of insulin and excipients into a physical structure which provides an element of drug targeting to maintain stability and increase bioavailability of insulin. The overview of various strategies applied in oral insulin delivery system design denotes the significance of mucoadhesiveness whereby a prolonged retention of dosage form in intestinal tract translates to cumulative insulin release and absorption, overcoming the intestinal transport capacity limit. Synthesis and use of mucoadhesive excipients, chemical modification of insulin to promote its physicochemical and biological stability for encapsulation in dosage form with prolonged retention characteristics and identification of potential insulin adjuncts are efforts needed to accelerate the speed of obtaining a functional oral insulin delivery system.
  4. Wong TW
    Recent Pat Drug Deliv Formul, 2009 Jan;3(1):8-25.
    PMID: 19149726 DOI: 10.2174/187221109787158346
    The global burden of diabetes is estimated to escalate from about 171 million in 2000 to 366 million people in 2030. The routine of diabetes treatment by injection of insulin incurs pain and has been one major factor negating the quality of life of diabetic patients. The possibility of administering insulin via alternative routes such as oral and nasal pathways has been investigated over the years, but with insulin experiencing risks of enzymatic degradation and poor transmucosal absorption. This leads to the rising needs to develop new formulation strategies emphasizing on the assembly of insulin and excipients into a physical structure to maintain the stability and increase the bioavailability of insulin. Chitosan and its derivatives or salts have been widely investigated as functional excipients of delivering insulin via oral, nasal and transdermal routes. The overview of various recent patented strategies on non-injection insulin delivery denotes the significance of chitosan for its mucoadhesive and able to protect the insulin from enzymatic degradation, prolong the retention time of insulin, as well as, open the inter-epithelial tight junction to facilitate systemic insulin transport. The chitosan can be employed to strengthen the physicochemical stability of insulin and multi-particulate matrix. The introduction of chitosan coat or co-formulation of chitosan with cationic gelatin or electrolytes which provide solidified or partially crosslinked structures retain and/or enhance the positive charges of dosage form necessary to induce mucoadhesiveness. The chitosan is modifiable chemically to produce water-soluble low molecular weight polymer which renders insulin able to be processed under mild conditions, and sulphated chitosan which markedly opens the paracellular channels for insulin transport. Combination of chitosan and fatty acid as hydrophobic nanoparticles promotes the insulin absorption via lymphoid tissue. Attainment of optimized formulations with higher levels of pharmacological bioavailability is deemed possible in future through targeted delivery of insulin using chitosan with specific adhesiveness to the intended absorption mucosa.
  5. Wong TW
    Curr Drug Deliv, 2008 Apr;5(2):77-84.
    PMID: 18393808
    Microwave has received a widespread application in pharmaceuticals and food processing, microbial sterilization, biomedical therapy, scientific and biomedical analysis, as well as, drug synthesis. This paper reviews the basis of application of microwave to prepare pharmaceutical dosage forms such as agglomerates, gel beads, microspheres, nanomatrix, solid dispersion, tablets and film coat. The microwave could induce drying, polymeric crosslinkages as well as drug-polymer interaction, and modify the structure of drug crystallites via its effects of heating and/or electromagnetic field on the dosage forms. The use of microwave opens a new approach to control the physicochemical properties and drug delivery profiles of pharmaceutical dosage forms without the need for excessive heat, lengthy process or toxic reactants. Alternatively, the microwave can be utilized to process excipients prior to their use in the formulation of drug delivery systems. The intended release characteristics of drugs in dosage forms can be met through modifying the physicochemical properties of excipients using the microwave.
  6. Wong TW
    J Pharm Pharmacol, 2011 Dec;63(12):1497-512.
    PMID: 22060280 DOI: 10.1111/j.2042-7158.2011.01347.x
    Use of alginate graft copolymers in oral drug delivery reduces dosage form manufacture complexity with reference to mixing or coating processes. It is deemed to give constant or approximately steady weight ratio of alginate to covalently attached co-excipient in copolymers, thereby leading to controllable matrix processing and drug release. This review describes various grafting approaches and their outcome on oral drug release behaviour of alginate graft copolymeric matrices. It examines drug release modulation mechanism of alginate graft copolymers against that of co-excipients in non-grafted formulations.
  7. Nawaz A, Wong TW
    J Microsc, 2016 07;263(1):34-42.
    PMID: 26695532 DOI: 10.1111/jmi.12371
    The chitosan has been used as the primary excipient in transdermal particulate dosage form design. Its distribution pattern across the epidermis and dermis is not easily accessible through chemical assay and limited to radiolabelled molecules via quantitative autoradiography. This study explored Fourier-transform infrared spectroscopy imaging technique with built-in microscope as the means to examine chitosan molecular distribution over epidermis and dermis with the aid of histology operation. Fourier-transform infrared spectroscopy skin imaging was conducted using chitosan of varying molecular weights, deacetylation degrees, particle sizes and zeta potentials, obtained via microwave ligation of polymer chains at solution state. Both skin permeation and retention characteristics of chitosan increased with the use of smaller chitosan molecules with reduced acetyl content and size, and increased positive charge density. The ratio of epidermal to dermal chitosan content decreased with the use of these chitosan molecules as their accumulation in dermis (3.90% to 18.22%) was raised to a greater extent than epidermis (0.62% to 1.92%). A larger dermal chitosan accumulation nonetheless did not promote the transdermal polymer passage more than the epidermal chitosan. A small increase in epidermal chitosan content apparently could fluidize the stratum corneum and was more essential to dictate molecular permeation into dermis and systemic circulation. The histology technique aided Fourier-transform infrared spectroscopy imaging approach introduces a new dimension to the mechanistic aspect of chitosan in transdermal delivery.
  8. Nurulaini H, Wong TW
    J Pharm Sci, 2011 Jun;100(6):2248-57.
    PMID: 21213311 DOI: 10.1002/jps.22459
    Conventional alginate pellets underwent rapid drug dissolution and loss of multiparticulate characteristics such as aggregation in acidic medium, thereby promoting oral dose dumping. This study aimed to design sustained-release dispersible alginate pellets through rapid in situ matrix dispersion and cross-linking by calcium salts during dissolution. Pellets made of alginate and calcium salts were prepared using a solvent-free melt pelletization technique that prevented reaction between processing materials during agglomeration and allowed such a reaction to occur only in dissolution phase. Drug release was remarkably retarded in acidic medium when pellets were formulated with water-soluble calcium acetate instead of acid-soluble calcium carbonate. Different from calcium salt-free and calcium carbonate-loaded matrices that aggregated or underwent gradual erosion, rapid in situ solvation of calcium acetate in pellets during dissolution resulted in burst of gas bubbles, fast pellet breakup, and dispersion. The dispersed fragments, though exhibiting a larger specific surface area for drug dissolution than intact matrix, were rapidly cross-linked by Ca(2+) from calcium acetate and had drug release retarded till a change in medium pH from 1.2 to 6.8. Being dispersible and pH-dependent in drug dissolution, these pellets are useful as multiparticulate intestinal-specific drug carrier without exhibiting dose dumping tendency of a "single-unit-like" system via pellet aggregation.
  9. Wong TW, Nurjaya S
    Eur J Pharm Biopharm, 2008 May;69(1):176-88.
    PMID: 17980563
    The effects of microwave irradiation on the drug release property of pectinate beads loaded internally with chitosan (chitosan-pectinate beads) were investigated against the pectinate beads and beads coacervated with chitosan externally (pectinate-chitosonium beads). These beads were prepared by an extrusion method using sodium diclofenac as the model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5, 10, 21 and 40 min. The profiles of drug dissolution, drug content, drug-polymer interaction and polymer-polymer interaction were determined by drug dissolution testing, drug content assay, drug adsorption study, differential scanning calorimetry (DSC) and Fourier transform infra-red spectroscopy (FTIR) techniques. Treatment of pectinate beads by microwave did not lead to a decrease, but an increase in the extent of drug released at 4h of dissolution owing to reduced pectin-pectin interaction via the CO moiety of polymer. In addition, the extent of drug released from the pectinate beads could not be reduced merely through the coacervation of pectinate matrix with chitosan. The reduction in the extent of drug released from the pectinate-chitosonium beads required the treatment of these beads by microwave, following an increase in drug-polymer and polymer-polymer interaction in the matrix. The extent of drug released from the pectinate beads was reduced through incorporating chitosan directly into the interior of pectinate matrix, owing to drug-chitosan adsorption. Nonetheless, the treatment of chitosan-pectinate matrix by microwave brought about an increase in the extent of drug released unlike those of pectinate-chitosonium beads. Apparently, the loading of chitosan into the interior of pectinate matrix could effectively retard the drug release without subjecting the beads to the treatment of microwave. The microwave was merely essential to reduce the release of drug from pectinate beads when the chitosan was introduced to the pectinate matrix by means of coacervation. Under the influences of microwave, the drug release property of beads made of pectin and chitosan was mainly modulated via the CH, OH and NH moieties of polymers and drug, with CH functional group purported to retard while OH and NH moieties purported to enhance the drug released from the matrix.
  10. Musa N, Wong TW
    Carbohydr Polym, 2020 Nov 01;247:116673.
    PMID: 32829801 DOI: 10.1016/j.carbpol.2020.116673
    Microencapsulation of polysaccharidic nanoparticles is met with nanoscale and biological performance changes. This study designs soft agglomerates as nanoparticle vehicle without nanoparticles undergoing physical processes that alter their geometry. The nanoparticles were made of high molecular weight chitosan/pectin with covalent 5-fluorouracil/folate. Nanoparticle aggregation vehicle was prepared from low molecular weight chitosan. The nanoparticles and aggregation vehicle were blended in specific weight ratios to produce soft agglomerates. Nanoparticles alone are unable to agglomerate. Adding aggregation vehicle (< 2 μm) promoted soft agglomeration with nanoparticles deposited onto its surfaces with minimal binary coalescence. The large and rough-surfaced aggregation vehicle promoted nanoparticles deposition and agglomeration. A rounder vehicle allowed assembly of nanoparticles-on-aggregation vehicle into agglomerates through interspersing smaller between larger populations. Soft agglomeration reduced early drug release, and was responsive to intracapsular sodium alginate coat to further sustain drug release. The soft agglomerates can serve as a primary oral colon-specific vehicle.
  11. Wong TW, Musa N
    Int J Pharm, 2012 Jul 1;430(1-2):184-96.
    PMID: 22531845 DOI: 10.1016/j.ijpharm.2012.04.026
    Conventional melt pelletization and granulation processes produce round and dense, and irregularly shaped but porous agglomerates respectively. This study aimed to design centrifugal air-assisted melt agglomeration technology for manufacture of spherical and yet porous "granulets" for ease of downstream manufacturing and enhancing drug release. A bladeless agglomerator, which utilized shear-free air stream to mass the powder mixture of lactose filler, polyethylene glycol binder and poorly water-soluble tolbutamide drug into "granulets", was developed. The inclination angle and number of vane, air-impermeable surface area of air guide, processing temperature, binder content and molecular weight were investigated with reference to "granulet" size, shape, texture and drug release properties. Unlike fluid-bed melt agglomeration with vertical processing air flow, the air stream in the present technology moved centrifugally to roll the processing mass into spherical but porous "granulets" with a drug release propensity higher than physical powder mixture, unprocessed drug and dense pellets prepared using high shear mixer. The fast-release attribute of "granulets" was ascribed to porous matrix formed with a high level of polyethylene glycol as solubilizer. The agglomeration and drug release outcomes of centrifugal air-assisted technology are unmet by the existing high shear and fluid-bed melt agglomeration techniques.
  12. Bose A, Elyagoby A, Wong TW
    Int J Pharm, 2014 Jul 1;468(1-2):178-86.
    PMID: 24709212 DOI: 10.1016/j.ijpharm.2014.04.006
    In situ coating of 5-fluorouracil pellets by ethylcellulose and pectin powder mixture (8:3 weight ratio) in capsule at simulated gastrointestinal media provides colon-specific drug release in vitro. This study probes into pharmacodynamic and pharmacokinetic profiles of intra-capsular pellets coated in vivo in rats with reference to their site-specific drug release outcomes. The pellets were prepared by extrusion-spheronization technique. In vitro drug content, drug release, in vivo pharmacokinetics, local colonic drug content, tumor, aberrant crypt foci, systemic hematology and clinical chemistry profiles of coated and uncoated pellets were examined against unprocessed drug. In vivo pellet coating led to reduced drug bioavailability and enhanced drug accumulation at colon (179.13 μg 5-FU/g rat colon content vs 4.66 μg/g of conventional in vitro film-coated pellets at 15 mg/kg dose). The in vivo coated pellets reduced tumor number and size, through reforming tubular epithelium with basement membrane and restricting expression of cancer from adenoma to adenocarcinoma. Unlike uncoated pellets and unprocessed drug, the coated pellets eliminated aberrant crypt foci which represented a putative preneoplastic lesion in colon cancer. They did not inflict additional systemic toxicity. In vivo pellet coating to orally target 5-fluorouracil delivery at cancerous colon is a feasible therapeutic treatment approach.
  13. Nawaz A, Wong TW
    J Invest Dermatol, 2018 11;138(11):2412-2422.
    PMID: 29857069 DOI: 10.1016/j.jid.2018.04.037
    5-Fluorouracil delivery profiles in the form of chitosan-folate submicron particles through skin and melanoma cells in vitro were examined using microwaves as the penetration enhancer. The in vivo pharmacokinetic profile of 5-fluorouracil was also determined. Chitosan-carboxymethyl-5-fluorouracil-folate conjugate was synthesized and processed into submicron particles by spray-drying technique. The size, zeta potential, morphology, drug content, and drug release, as well as skin permeation and retention, pharmacokinetics, in vitro SKMEL-28 melanoma cell line cytotoxicity, and intracellular trafficking profiles of drug/particles, were examined as a function of skin/melanoma cell treatment by microwaves at 2,450 MHz for 5 + 5 minutes. The level of skin drug/particle retention in vitro and in vivo increased in skin treated by microwaves. This was facilitated by the drug conjugating to chitosan and microwaves fluidizing both the protein and lipid domains of epidermis and dermis. The uptake of chitosan-folate particles by melanoma cells was mediated via lipid raft route. It was promoted by microwaves, which fluidized the lipid and protein regimes of the cell membrane, and this increased drug cytotoxicity. In vivo pharmacokinetic study indicated skin treatment by microwave-enhanced drug retention but not permeation. The combination of microwaves and submicron particles synergized skin drug retention and intracellular drug delivery.
  14. Wong TW, Sumiran N
    J Pharm Pharmacol, 2014 May;66(5):646-57.
    PMID: 24329400 DOI: 10.1111/jphp.12192
    Objective: Examine the formation of pectin-insulin nanoparticles and their blood glucose lowering properties.

    Methods: The calcium pectinate nanoparticles were prepared by ionotropic gelation method, with alginate, sodium chloride or Tween 80 as additive. Their in vitro physicochemical, drug release and in vivo blood glucose lowering characteristics were evaluated.

    Key findings: Spherical calcium pectinate-insulin nanoparticles were characterized by size, zeta potential, insulin content and insulin association efficiency of 348.4 ± 12.9 nm, -17.9 ± 0.8 mV, 8.4 ± 1.0% and 63.8 ± 7.4%, respectively. They released less than 25% insulin following 24 h in simulated intestinal medium and exhibited delayed blood glucose lowering effect in rats. Incorporation of solubilizer sodium chloride or Tween 80 into nanoparticles did not enhance blood glucose lowering capacity owing to sodium chloride reduced matrix insulin content and Tween 80 interacted with water and had its blood glucose dilution effect negated. Combination of nanoparticles with alginate gel to allow prolonged intestinal residence and more insulin release did not enhance their blood glucose lowering capacity because of calcium alginate-cross-linked gel formation that could retard insulin release and migration into systemic circulation.

    Conclusion: Physicochemical responses of additives in vivo affected blood glucose regulation property of pectin-insulin nanoparticles.

    Keywords: Tween 80; alginate; insulin; nanoparticle; pectin.
  15. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
  16. Nawaz A, Wong TW
    Carbohydr Polym, 2017 Feb 10;157:906-919.
    PMID: 27988008 DOI: 10.1016/j.carbpol.2016.09.080
    This study investigated transdermal drug delivery mechanisms of chitosan nanoparticles with the synergistic action of microwave in skin modification. Chitosan nanoparticles, with free or conjugated 5-fluorouracil, were prepared by nanospray-drying technique. Their transdermal drug delivery profiles across untreated and microwave-treated skins (2450MHz 5min, 5+5min; 3985MHz 5min) were examined. Both constituent materials of nanoparticles and drug encapsulation were required to succeed transdermal drug delivery. The drug transport was mediated via nanoparticles carrying drug across the skin and/or diffusion of earlier released drug molecules from skin surfaces. The drug/nanoparticles transport was facilitated through constituent nanoparticles and microwave fluidizing protein/lipid domains of epidermis and dermis (OH, NH, CH, CN) and dermal trans-to-gauche lipid conformational changes. The microwave induced marked changes to the skin ceramide content homogeneity. The chitosan nanoparticles largely affected the palmitic acid and keratin domains. Combined microwave and nanotechnologies synergize transdermal drug delivery.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links