Displaying all 2 publications

Abstract:
Sort:
  1. Bhattamisra SK, Siang TC, Rong CY, Annan NC, Sean EHY, Xi LW, et al.
    Curr Diabetes Rev, 2019;15(5):382-394.
    PMID: 30648511 DOI: 10.2174/1573399815666190115145702
    BACKGROUND: The incidence of diabetes is increasing steeply; the number of diabetics has doubled over the past three decades. Surprisingly, the knowledge of type 3c diabetes mellitus (T3cDM) is still unclear to the researchers, scientist and medical practitioners, leading towards erroneous diagnosis, which is sometimes misdiagnosed as type 1 diabetes mellitus (T1DM), or more frequently type 2 diabetes mellitus (T2DM). This review is aimed to outline recent information on the etiology, pathophysiology, diagnostic procedures, and therapeutic management of T3cDM patients.

    METHODS: The literature related to T3cDM was thoroughly searched from the public domains and reviewed extensively to construct this article. Further, existing literature related to the other forms of diabetes is reviewed for projecting the differences among the different forms of diabetes. Detailed and updated information related to epidemiological evidence, risk factors, symptoms, diagnosis, pathogenesis and management is structured in this review.

    RESULTS: T3cDM is often misdiagnosed as T2DM due to the insufficient knowledge differentiating between T2DM and T3cDM. The pathogenesis of T3cDM is explained which is often linked to the history of chronic pancreatitis, pancreatic cancer. Inflammation, and fibrosis in pancreatic tissue lead to damage both endocrine and exocrine functions, thus leading to insulin/glucagon insufficiency and pancreatic enzyme deficiency.

    CONCLUSION: Future advancements should be accompanied by the establishment of a quick diagnostic tool through the understanding of potential biomarkers of the disease and newer treatments for better control of the diseased condition.

  2. Bhattamisra SK, Shak AT, Xi LW, Safian NH, Choudhury H, Lim WM, et al.
    Int J Pharm, 2020 Apr 15;579:119148.
    PMID: 32084576 DOI: 10.1016/j.ijpharm.2020.119148
    Rotigotine, a non-ergoline dopamine agonist, has been shown to be highly effective for the treatment of Parkinson's disease (PD). However, despite its therapeutic potential, its' clinical applications were hindered due to low aqueous solubility, first-pass metabolism and low bioavailability. Therefore, we developed rotigotine-loaded chitosan nanoparticles (RNPs) for nose-to-brain delivery and evaluated its neuronal uptake, antioxidant and neuroprotective effects using cell-based studies. The pharmacological effects of nose-to-brain delivery of the RNPs were also evaluated in an animal model of PD. The average particle size, particle size distribution and entrapment efficiency of the RNPs were found to be satisfactory. Exposure of RNPs for 24 h did not show any cytotoxicity towards SH-SY5Y human neuroblastoma cells. Furthermore, the RNPs caused a decrease in alpha-synuclein (SNCA) and an increase in tyrosine hydroxylase (TH) expression in these cells, suggestion that the exposure alleviated some of the direct neurotoxic effects of 6-OHDA. Behavioral and biochemical testing of RNPs in haloperidol-induced PD rats showed a reversal of catalepsy, akinesia and restoration of swimming ability. A decrease in lactate dehydrogenase (LDH) and an increase in catalase activities were also observed in the brain tissues. The results from the animal model of PD show that intranasally-administered RNPs enhanced brain targeting efficiency and drug bioavailability. Thus, RNPs for nose-to-brain delivery has significant potential to be developed as a treatment approach for PD.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links