Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Xu J, Gong J, Ji D
    PLoS One, 2023;18(12):e0291313.
    PMID: 38150464 DOI: 10.1371/journal.pone.0291313
    Music streaming platforms have recently become one of the latest innovative music devices used to replace traditional music sets. In order to examine users' behavior on music streaming platforms, this study proposes an extended research model based on flow theory and investigates the relationship between flow experience and co-creation behavior. A partial least square methodology was employed to test the proposed model and corresponding hypotheses on data collected from 390 survey samples. The results showed that flow experience has a significant influence on users' co-creation behavior. Among the three antecedents, only perceived skill and perceived interactivity have the strongest effects on flow experience, while perceived control has little effect on flow experience. This study discusses some valuable theoretical implications and offers insights useful for both researchers and practitioners.
  2. Wang W, Zhao X, Jia Y, Xu J
    PLoS One, 2024;19(2):e0297578.
    PMID: 38319912 DOI: 10.1371/journal.pone.0297578
    The objectives are to improve the diagnostic efficiency and accuracy of epidemic pulmonary infectious diseases and to study the application of artificial intelligence (AI) in pulmonary infectious disease diagnosis and public health management. The computer tomography (CT) images of 200 patients with pulmonary infectious disease are collected and input into the AI-assisted diagnosis software based on the deep learning (DL) model, "UAI, pulmonary infectious disease intelligent auxiliary analysis system", for lesion detection. By analyzing the principles of convolutional neural networks (CNN) in deep learning (DL), the study selects the AlexNet model for the recognition and classification of pulmonary infection CT images. The software automatically detects the pneumonia lesions, marks them in batches, and calculates the lesion volume. The result shows that the CT manifestations of the patients are mainly involved in multiple lobes and density, the most common shadow is the ground-glass opacity. The detection rate of the manual method is 95.30%, the misdetection rate is 0.20% and missed diagnosis rate is 4.50%; the detection rate of the DL-based AI-assisted lesion method is 99.76%, the misdetection rate is 0.08%, and the missed diagnosis rate is 0.08%. Therefore, the proposed model can effectively identify pulmonary infectious disease lesions and provide relevant data information to objectively diagnose pulmonary infectious disease and manage public health.
  3. Zhang Q, Zhao JJ, Xu J, Feng F, Qu W
    J Ethnopharmacol, 2015 Sep 15;173:48-80.
    PMID: 26091967 DOI: 10.1016/j.jep.2015.06.011
    The genus Uncaria belongs to the family Rubiaceae, which mainly distributed in tropical regions, such as Southeast Asia, Africa and Southeast America. Their leaves and hooks have long been thought to have healing powers and are already being tested as a treatment for asthma, cancer, cirrhosis, diabetes, hypertension, stroke and rheumatism. The present review aims to provide systematically reorganized information on the ethnopharmacology, phytochemistry and pharmacology of the genus Uncaria to support for further therapeutic potential of this genus. To better understanding this genus, information on the stereo-chemistry and structure-activity relationships in indole alkaloids is also represented.
  4. Usman A, Razak IA, Fun HK, Chantrapromma S, Zhang Y, Xu JH
    Acta Crystallogr C, 2001 Dec;57(Pt 12):1438-40.
    PMID: 11740110
    In the title compound, C25H19NO4, the indole moiety is not completely planar, the heterocyclic ring being distorted very slightly towards a half-chair conformation. The benzoyl and 4-methoxyphenyl substituents are individually almost planar and are in a bisecting and nearly perpendicular configuration, respectively, with respect to the plane of the indole moiety. The molecular and packing structures in the crystal are stabilized by intramolecular and intermolecular C-H...O interactions.
  5. Xu J, Harrison LJ, Vittal JJ, Xu YJ, Goh SH
    J Nat Prod, 2000 Aug;63(8):1062-5.
    PMID: 10978198
    Leaf extracts of Callicarpa pentandra provided four new clerodane-type diterpenoids (1-4), of which 1, 2, and 4 have ring-A-contracted structures. Their structures and stereochemistry were established by spectral data interpretation, and for 3 also by single-crystal X-ray diffraction.
  6. Heng BC, Gong T, Xu J, Lim LW, Zhang C
    Biomed Rep, 2018 Aug;9(2):161-168.
    PMID: 29963307 DOI: 10.3892/br.2018.1108
    Dental pulp stem cells (DPSCs) originate from the embryonic neural crest and have neurogenic potential. The present study investigated the roles of the forward and reverse EphrinB2 signalling pathways during DPSC neurogenesis. Treatment of DPSCs with recombinant EphrinB2-Fc protein over 7 days in a neural induction culture resulted in significant downregulation of the following neural markers: βIII-Tubulin, neural cell adhesion molecule (NCAM), nestin, neurogenin 2 (NGN2), neurofilament medium polypeptide and Musashi1. Immunocytochemistry revealed that EphrinB2-Fc-treated DPSCs exhibited more rounded morphologies with fewer neurite outgrowths as well as reduced protein expression of βIII-tubulin and NGN2. Treatment of DPSCs with a peptide inhibitor specific to the EphB4 receptor significantly upregulated expression of the neural markers microtubule-associated protein 2, Musashi1, NGN2 and neuron-specific enolase, whereas treatment with a peptide inhibitor specific to the EphB2 receptor exerted negligible effects on neurogenesis. Transgenic expression of EphrinB2 in DPSCs resulted in significant upregulation of Musashi1 and NCAM gene expression, while treatment of DPSCs with recombinant EphB4-Fc protein led to significant upregulation of only Musashi1. Thus, it may be concluded that stimulation of forward EphrinB2-EphB4 signalling markedly inhibited neurogenesis in DPSCs, whereas suppression of this forward signalling pathway with peptide inhibitor specific to EphB4 promoted neurogenesis. Meanwhile, stimulation of reverse EphB4-EphrinB2 signalling only marginally enhanced the neural differentiation of DPSCs. The present findings indicate the potential application of peptide or small molecule inhibitors of EphrinB2 forward signalling in neural tissue engineering with DPSCs.
  7. Chen Z, Ding G, Wang Y, Xu J, Lin Z
    J Genet, 2018 Nov 14;97(5):e147-e151.
    PMID: 30574879
    The tiger frog Hoplobatrachus rugulosus (Wiegmann 1834) is a large robust dicroglossid frog widely distributed in southern China, Malaysia, Myanmar, Vietnam and Thailand. The escaped bred tiger frog introduced from Thailand hybridized with Chinese native population may have affected the genetic diversity of local Chinese tiger frogs. However, previous microsatellite loci of this species do not offer enough information to construct the genetic map. Here, we reported 33 new microsatellite loci from transcriptome sequencing for H. rugulosus. Alleles ranged between 1 and 10 per locus and only one locus (HRT001) was monomorphic. The polymorphic information content, observed and expected heterozygosity were 0-0.794, 0-0.969 and 0-0.831, respectively. None of the loci was observed in linkage disequilibrium and two loci (HRT023 and HRT068) deviated from Hardy-Weinberg equilibrium after Bonferroni correction for multiple tests. These transcriptome-derived microsatellite markers will be usedto study the genetic divergence and construct the genetic map in H. rugulosus.
  8. Shi Q, Wang Y, Xu J, Liu Z, Chin CY
    PMID: 35129118 DOI: 10.1107/S2052520621012749
    Understanding crystallization behaviors is of utmost importance for developing robust amorphous pharmaceutical solids. Herein, the crystal growth behaviors of amorphous anti-inflammatory drug nimesulide (NIME) are systemically investigated in the glassy and supercooled liquid state as a function of temperature. A sudden over-tenfold increase is observed in the bulk crystal growth of NIME on cooling below its glass transition temperature (Tg). This fast growth behavior is known as a glass-to-crystal (GC) mode and has been reported in some molecular glasses. Fast surface crystal growth of NIME can persist up to Tg + 57°C with a weak jump in its growth rates at 30-40°C. In addition, surface crystal growth and GC growth of NIME exhibit an almost identical temperature dependence, supporting the view that GC growth is indeed a surface-facilitated process. Moreover, the bubble-induced fast crystal growth of NIME is observed in the interior of its supercooled liquid with approximately the same growth kinetics as surface crystal growth. These findings are relevant for a full understanding of the surface-related crystallization behaviors and physical stability of amorphous pharmaceutical formulations.
  9. Xu J, Jiang H, Li J, Cheng KK, Dong J, Chen Z
    PLoS One, 2015;10(4):e0119654.
    PMID: 25849323 DOI: 10.1371/journal.pone.0119654
    Wilson's disease (WD), also known as hepatoleticular degeneration (HLD), is a rare autosomal recessive genetic disorder of copper metabolism, which causes copper to accumulate in body tissues. In this study, rats fed with copper-laden diet are used to render the clinical manifestations of WD, and their copper toxicity-induced organ lesions are studied. To investigate metabolic behaviors of 'decoppering' process, penicillamine (PA) was used for treating copper-laden rats as this chelating agent could eliminate excess copper through the urine. To date, there has been limited metabolomics study on WD, while metabolic impacts of copper accumulation and PA administration have yet to be established.
  10. Guo L, Wang Y, Xu X, Cheng KK, Long Y, Xu J, et al.
    J Proteome Res, 2021 01 01;20(1):346-356.
    PMID: 33241931 DOI: 10.1021/acs.jproteome.0c00431
    Identification of phosphorylation sites is an important step in the function study and drug design of proteins. In recent years, there have been increasing applications of the computational method in the identification of phosphorylation sites because of its low cost and high speed. Most of the currently available methods focus on using local information around potential phosphorylation sites for prediction and do not take the global information of the protein sequence into consideration. Here, we demonstrated that the global information of protein sequences may be also critical for phosphorylation site prediction. In this paper, a new deep neural network model, called DeepPSP, was proposed for the prediction of protein phosphorylation sites. In the DeepPSP model, two parallel modules were introduced to extract both local and global features from protein sequences. Two squeeze-and-excitation blocks and one bidirectional long short-term memory block were introduced into each module to capture effective representations of the sequences. Comparative studies were carried out to evaluate the performance of DeepPSP, and four other prediction methods using public data sets The F1-score, area under receiver operating characteristic curves (AUROC), and area under precision-recall curves (AUPRC) of DeepPSP were found to be 0.4819, 0.82, and 0.50, respectively, for S/T general site prediction and 0.4206, 0.73, and 0.39, respectively, for Y general site prediction. Compared with the MusiteDeep method, the F1-score, AUROC, and AUPRC of DeepPSP were found to increase by 8.6, 2.5, and 8.7%, respectively, for S/T general site prediction and by 20.6, 5.8, and 18.2%, respectively, for Y general site prediction. Among the tested methods, the developed DeepPSP method was also found to produce best results for different kinase-specific site predictions including CDK, mitogen-activated protein kinase, CAMK, AGC, and CMGC. Taken together, the developed DeepPSP method may offer a more accurate phosphorylation site prediction by including global information. It may serve as an alternative model with better performance and interpretability for protein phosphorylation site prediction.
  11. Wang L, Xu J, Yan Y, Liu H, Karunakaran T, Li F
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):1617-1627.
    PMID: 31014134 DOI: 10.1080/21691401.2019.1594862
    Nanotechnology has been materialized as a proficient technology for the development of anticancer nanoparticles all the way through an environment-friendly approach. Conventionally, nanoparticles have been assembled by dissimilar methods, but regrettably rely on the negative impact on the natural environment. Amalgamation of nanoparticles by means of plant extract is alternate conservative methods. Scutellaria barbata species was used majorly as food or as medicines against various diseases, and extensive research was conducted for their therapeutic properties. The present research was mainly focused on the synthesis of gold nanoparticles from the Scutellaria barbata by green route method and evaluation of its anticancer activity against pancreatic cancer cell lines (PANC-1). The gold nanoparticles have been characterized by UV-visible spectroscopy, TEM, SAED, AFM, and FTIR analysis. The synthesized gold nanoparticles (AuNPs) possessed effective anticancer activity against pancreatic cancer cell lines (PANC-1). Hence, further research on this plant may lead to the development of novel anticancer drugs which can be used to combat pancreatic cancer.
  12. Wang HQ, Xu J, Lin X, Li Y, Kang J, Zheng JC
    Light Sci Appl, 2021 Jul 27;10(1):153.
    PMID: 34315859 DOI: 10.1038/s41377-021-00592-9
    The fabrication of small-scale electronics usually involves the integration of different functional materials. The electronic states at the nanoscale interface plays an important role in the device performance and the exotic interface physics. Photoemission spectroscopy is a powerful technique to probe electronic structures of valence band. However, this is a surface-sensitive technique that is usually considered not suitable for the probing of buried interface states, due to the limitation of electron-mean-free path. This article reviews several approaches that have been used to extend the surface-sensitive techniques to investigate the buried interface states, which include hard X-ray photoemission spectroscopy, resonant soft X-ray angle-resolved photoemission spectroscopy and thickness-dependent photoemission spectroscopy. Especially, a quantitative modeling method is introduced to extract the buried interface states based on the film thickness-dependent photoemission spectra obtained from an integrated experimental system equipped with in-situ growth and photoemission techniques. This quantitative modeling method shall be helpful to further understand the interfacial electronic states between functional materials and determine the interface layers.
  13. Gong T, Heng BC, Xu J, Zhu S, Yuan C, Lo EC, et al.
    J Biomed Mater Res A, 2017 04;105(4):1083-1093.
    PMID: 28076902 DOI: 10.1002/jbm.a.36003
    Dental stem cells can serve as a potential source of functional endothelial cells for tissue engineering applications, but the endothelial-lineage differentiation efficiency is rather low even with growth factors and mechanical stimuli, which greatly limits their clinical applications. This is partly due to the deficiency of standard two-dimensional (2-D) culture systems, which is unable to recapitulate the three-dimensional (3-D) in vivo milieu that is rich in extracellular matrix. Hence, we extracted decellularized extracellular matrix from human umbilical vein endothelial cells (HUVECs-DECM) to provide a bioactive substratum conducive to the endothelial differentiation of dental stem cells. Compared to cells plated on tissue culture polystyrene (TCP), stem cells from exfoliated deciduous teeth (SHED) cultured on the HUVECs-DECM demonstrated more regular arrangement and elongated morphology. HUVECs-DECM significantly enhanced the rapid adhesion and proliferation rates of SHED, as demonstrated by WST-8 assay and immunocytochemistry indicating higher expression levels of vinculin by newly adherent SHED on HUVECs-DECM versus TCP. In addition, there was twofold to fivefold higher mRNA expression levels of endothelial-specific markers CD31 and VEGFR-2 in SHED after seven days of culture on DECM versus TCP. Functional testing with in vitro matrigel angiogenesis assay identified more capillary-like structure formation with significantly higher tubule length in SHED induced by DECM versus TCP. Hence, the results of this study provide a better understanding of the unique characteristics of cell-specific ECM and demonstrated the potential use of HUVECs-DECM as a culture substratum conducive for stimulating the endothelial differentiation of SHED for therapeutic angiogenic applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1083-1093, 2017.
  14. Li C, Wang R, Xu J, Luo Y, Tan ML, Jiang Y
    Int J Biometeorol, 2018 Dec;62(12):2197-2204.
    PMID: 30368677 DOI: 10.1007/s00484-018-1623-2
    Understanding the impacts of climate change on crop yield is important for improving crop growth and yield formation in northwestern China. In this study, we evaluated the relationship between meteorological dryness/wetness conditions and spring wheat yield in the Ili river basin (IRB). The climate and yield data from 1961 to 2013 were collected to analyze characteristics and correlations between these two variables using the standardized precipitation evapotranspiration index (SPEI), yield detrending method, modified Mann-Kendall test and Spearman correlation analysis. Main results were as follows: (1) correlations between monthly SPEI values (MSV) and climatic yield of spring wheat indicated that the dryness/wetness condition in May was a key factor affecting yield in the whole region; (2) although the MSV in May and yield fluctuated from negative to positive values in time, the severely and extremely dryness events were in good agreement with the higher yield losses; (3) each increase of 0.5 MSV in May promoted over 3% increase of yield in most part of IRB; however, the larger variability of MSV in May resulted in larger yield fluctuations; and (4) the Tibetan Plateau index in April showed significant correlations with the MSV in May and yield, which provided a precursory signal for decision-makers to better understand potential yield fluctuations.
  15. Xu J, Wang Y, Xu X, Cheng KK, Raftery D, Dong J
    Molecules, 2021 Sep 24;26(19).
    PMID: 34641330 DOI: 10.3390/molecules26195787
    In mass spectrometry (MS)-based metabolomics, missing values (NAs) may be due to different causes, including sample heterogeneity, ion suppression, spectral overlap, inappropriate data processing, and instrumental errors. Although a number of methodologies have been applied to handle NAs, NA imputation remains a challenging problem. Here, we propose a non-negative matrix factorization (NMF)-based method for NA imputation in MS-based metabolomics data, which makes use of both global and local information of the data. The proposed method was compared with three commonly used methods: k-nearest neighbors (kNN), random forest (RF), and outlier-robust (ORI) missing values imputation. These methods were evaluated from the perspectives of accuracy of imputation, retrieval of data structures, and rank of imputation superiority. The experimental results showed that the NMF-based method is well-adapted to various cases of data missingness and the presence of outliers in MS-based metabolic profiles. It outperformed kNN and ORI and showed results comparable with the RF method. Furthermore, the NMF method is more robust and less susceptible to outliers as compared with the RF method. The proposed NMF-based scheme may serve as an alternative NA imputation method which may facilitate biological interpretations of metabolomics data.
  16. Zhang S, Xu J, Lee LH, Chew EP, Wong WP, Chen CH
    IEEE Trans Evol Comput, 2017 Apr;21(2):206-219.
    PMID: 29170617 DOI: 10.1109/TEVC.2016.2592185
    Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
  17. Shen G, Huang Y, Dong J, Wang X, Cheng KK, Feng J, et al.
    J Agric Food Chem, 2018 Jan 10;66(1):368-377.
    PMID: 29215281 DOI: 10.1021/acs.jafc.7b03182
    Taurine is indispensable in aquatic diets that are based solely on plant protein, and it promotes growth of many fish species. However, the physiological and metabolome effects of taurine on fish have not been well described. In this study, 1H NMR-based metabolomics approaches were applied to investigate the metabolite variations in Nile tilapia (Oreochromis nilotictus) muscle in order to visualize the metabolic trajectory and reveal the possible mechanisms of metabolic effects of dietary taurine supplementation on tilapia growth. After extraction using aqueous and organic solvents, 19 taurine-induced metabolic changes were evaluated in our study. The metabolic changes were characterized by differences in carbohydrate, amino acid, lipid, and nucleotide contents. The results indicate that taurine supplementation could significantly regulate the physiological state of fish and promote growth and development. These results provide a basis for understanding the mechanism of dietary taurine supplementation in fish feeding. 1H NMR spectroscopy, coupled with multivariate pattern recognition technologies, is an efficient and useful tool to map the fish metabolome and identify metabolic responses to different dietary nutrients in aquaculture.
  18. Zhu J, Li Y, Jiang H, Liu C, Lu W, Dai W, et al.
    Ecotoxicology, 2018 May;27(4):411-419.
    PMID: 29404868 DOI: 10.1007/s10646-018-1904-x
    The novel mesoionic insecticide triflumezopyrim was highly effective in controlling both imidacloprid-susceptible and resistant planthopper populations in Malaysia. However, the toxicity of triflumezopyrim to planthopper populations and their natural enemies has been under-investigated in China. In this study, the median lethal concentrations (LC50) of triflumezopyrim were determined in eight field populations of Nilaparvata lugens and one population of Sogatella furcifera from China under laboratory conditions. Triflumezopyrim showed higher toxicity to planthopper populations than the commonly-used insecticide, imidacloprid. Furthermore, the lethal effect of triflumezopyrim on eight beneficial arthropods of planthoppers was investigated in the laboratory and compared with three commonly-used insecticides, thiamethoxam, chlorpyrifos and abamectin. Triflumezopyrim was harmless to Anagrus nilaparvatae, Cyrtorhinus lividipennis and Paederus fuscipes, while thiamethoxam, chlorpyrifos and abamectin were moderately harmful or harmful to the insect parasitoid and predators. Triflumezopyrim and thiamethoxam were harmless to the predatory spiders Pirata subpiraticus, Ummeliata insecticeps, Hylyphantes graminicola and Pardosa pseudoannulata, and slightly harmful to Theridion octomaculatum. Chlorpyrifos caused slight to high toxicity to four spider species except U. insecticeps. Abamectin was moderately to highly toxic to all five spider species. Our results indicate that triflumezopyrim has high efficacy for rice planthoppers populations and is compatibile with their natural enemies in China.
  19. Lin C, Wei Z, Cheng KK, Xu J, Shen G, She C, et al.
    Sci Rep, 2017 07 28;7(1):6820.
    PMID: 28754994 DOI: 10.1038/s41598-017-07306-5
    Acupuncture is a traditional Chinese medicine therapy that has been found useful for treating various diseases. The treatments involve the insertion of fine needles at acupoints along specific meridians (meridian specificity). This study aims to investigate the metabolic basis of meridian specificity using proton nuclear magnetic resonance (1H NMR)-based metabolomics. Electro-acupuncture (EA) stimulations were performed at acupoints of either Stomach Meridian of Foot-Yangming (SMFY) or Gallbladder Meridian of Foot-Shaoyang (GMFS) in healthy male Sprague Dawley (SD) rats. 1H-NMR spectra datasets of serum, urine, cortex, and stomach tissue extracts from the rats were analysed by multivariate statistical analysis to investigate metabolic perturbations due to EA treatments at different meridians. EA treatment on either the SMFY or GMFS acupoints induced significant variations in 31 metabolites, e.g., amino acids, organic acids, choline esters and glucose. Moreover, a few meridian-specific metabolic changes were found for EA stimulations on the SMFY or GMFS acupoints. Our study demonstrated significant metabolic differences in response to EA stimulations on acupoints of SMFY and GMFS meridians. These results validate the hypothesis that meridian specificity in acupuncture is detectable in the metabolome and demonstrate the feasibility and effectiveness of a metabolomics approach in understanding the mechanism of acupuncture.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links