Displaying publications 1 - 20 of 99 in total

Abstract:
Sort:
  1. Zhao C, Wong L, Zhu Q, Yang H
    PLoS One, 2018;13(6):e0199006.
    PMID: 29902222 DOI: 10.1371/journal.pone.0199006
    BACKGROUND: The escalating problem of multiple chronic conditions among older adults in China draws public health attention due to increasing proportion of the elderly population. This study sought to assess the prevalence of and factors associated with four chronic diseases in older adults in Haikou, the capital city of Hainan Province, China.

    METHOD: In this cross-sectional study, 9432 community-dwelling elderly people aged 60 years and older living in rural or urban areas in Haikou were investigated. The interviews collected self-reported information on the presence of four major chronic diseases, as well as socio-demographic characteristics, lifestyle factors and self-reported height and weight.

    FINDINGS: Overall, 31.7% (2961/9344) reported at least one of the four chronic diseases. The prevalence of hypertension, diabetes mellitus, COPD, and stroke was 26.0% (2449/9407), 8.0% (749/9371), 1.0% (95/9360), and 1.9% (175/9382), respectively. Common correlates of the four major chronic diseases were older age, being engaged in intellectual work, currently being a smoker and obesity. Gender, locality of residence, and alcohol consumptions were also found to be associated to some of the chronic conditions.

    CONCLUSION: This finding indicates that multiple chronic conditions among elderly people in Haikou are prevalent and warrant special attention to reduce diseases burden and align health care services to cater the holistic elderly patients' need.

  2. Krishnan K, Mitra NK, Yee LS, Yang HM
    J Neural Transm (Vienna), 2012 Mar;119(3):345-52.
    PMID: 21922192 DOI: 10.1007/s00702-011-0715-5
    Chlorpyrifos (CPF), an organophosphate pesticide inhibits acetylcholinesterase (AChE) and causes neuromuscular incoordination among children and elderly. The objectives of the present study were to compare the neurotoxic effects of dermal application of CPF on the cerebellum in the parameters of glial fibrillary acidic protein (GFAP) expression in young and adult mice and to correlate with the changes in acetylcholinesterase levels. Male Balb/c mice, 150 days old (adult) and 18 days old (young) were dermally applied with ½ LD(50) of CPF over the tails for 14 days. Serum AChE concentration was estimated and GFAP immunostaining was performed on sagittal paraffin sections through the vermis of cerebellum. Although reduced in both age-groups exposed to CPF, percentage of reduction in serum AChE was more in adult compared to the young. Under GFAP immunostaining, brown colour fibres and glial cells were observed in cerebellar cortex and medulla in both the experimental groups. The mean GFAP-positive glial cell count in cerebellar medulla per mm(2) of section was significantly (p 
  3. Zhang X, Chan NW, Pan B, Ge X, Yang H
    Sci Total Environ, 2021 Nov 10;794:148388.
    PMID: 34217078 DOI: 10.1016/j.scitotenv.2021.148388
    The SAR has the ability of all-weather and all-time data acquisition, it can penetrate the cloud and is not affected by extreme weather conditions, and the acquired images have better contrast and rich texture information. This paper aims to investigate the use of an object-oriented classification approach for flood information monitoring in floodplains using backscattering coefficients and interferometric coherence of Sentinel-1 data under time series. Firstly, the backscattering characteristics and interference coherence variation characteristics of SAR time series are used to analyze whether the flood disaster information can be accurately reflected and provide the basis for selecting input classification characteristics of subsequent SAR images. Subsequently, the contribution rate index of the RF model is used to calculate the importance of each index in time series to convert the selected large number of classification features into low dimensional feature space to improve the classification accuracy and reduce the data redundancy. Finally, the SAR image features in each period after multi-scale segmentation and feature selection are jointly used as the input features of RF classification to extract and segment the water in the study area to monitor floods' spatial distribution and dynamic characteristics. The results showed that the various attributes of backscatter coefficients and interferometric coherence under time series could accurately correspond with the actual flood risk, and the combined use of backscattering coefficient and interferometric coherence for flood extraction can significantly improve the accuracy of flood information extraction. Overall, the object-based random forest method using the backscattering coefficient and interference coherence of Sentinel-1 time series for flood extraction advances our understanding of flooding's temporal and spatial dynamics, essential for the timely adoption of adaptation and mitigation strategies for loss reduction.
  4. Luo D, Li P, Yue Y, Ma J, Yang H
    Sensors (Basel), 2017 May 04;17(5).
    PMID: 28471372 DOI: 10.3390/s17050962
    The protection of concrete structures against corrosion in marine environments has always been a challenge due to the presence of a saline solution-A natural corrosive agent to the concrete paste and steel reinforcements. The concentration of salt is a key parameter influencing the rate of corrosion. In this paper, we propose an optical fiber-based salinity sensor based on bundled multimode plastic optical fiber (POF) as a sensor probe and a concave mirror as a reflector in conjunction with an intensity modulation technique. A refractive index (RI) sensing approach is analytically investigated and the findings are in agreement with the experimental results. A maximum sensitivity of 14,847.486/RIU can be achieved at RI = 1.3525. The proposed technique is suitable for in situ measurement and monitoring of salinity in liquid.
  5. Zhang H, Zhang H, Yang H, Shuid AN, Sandai D, Chen X
    Front Genet, 2023;14:1290036.
    PMID: 38098472 DOI: 10.3389/fgene.2023.1290036
    Background: Endometriosis (EM) is a common gynecological condition in women of reproductive age, with diverse causes and a not yet fully understood pathogenesis. Traditional diagnostics rely on single diagnostic biomarkers and does not integrate a variety of different biomarkers. This study introduces multiple machine learning techniques, enhancing the accuracy of predictive models. A novel diagnostic approach that combines various biomarkers provides a new clinical perspective for improving the diagnostic efficiency of endometriosis, holding significant potential for clinical application. Methods: In this study, GSE51981 was used as a test set, and 11 machine learning algorithms (Lasso, Stepglm, glmBoost, Support Vector Machine, Ridge, Enet, plsRglm, Random Forest, LDA, XGBoost, and NaiveBayes) were employed to construct 113 predictive models for endometriosis. The optimal model was determined based on the AUC values derived from various algorithms. These genes were then evaluated using nine machine learning algorithms (Random Forest, SVM, Gradient Boosting Machine, LASSO, XGB, NNET, Generalized Linear Model, KNN, and Decision Tree) to assess significance scores and identify diagnostic genes for each algorithm. The diagnostic value of these genes was further validated in external datasets from GSE7305, GSE11691, and GSE120103. Results: Analysis of the GSE51981 dataset revealed 62 DEGs. The Stepglm [Both] and plsRglm algorithms identified 30 genes with the most potential using the AUC evaluation. Subsequently, nine machine learning algorithms were applied to select diagnostic genes, leading to the identification of five key diagnostic genes using the LASSO algorithm. The ADAT1 gene exhibited the best single-gene predictive performance, with an AUC of 0.785. A combination of genes (FOS, EPHX1, DLGAP5, PCSK5, and ADAT1) achieves an AUC of 0.836 in the test dataset. Moreover, these genes consistently exhibited an AUC exceeding 0.78 in all validation datasets, demonstrating superior predictive performance. Furthermore, correlation analysis with immune infiltration strengthened their predictive value by demonstrating the close relationship of the diagnostic genes with immune infiltrating cells. Conclusion: A combination of biomarkers consisting of FOS, EPHX1, DLGAP5, PCSK5, and ADAT1 can serve as a diagnostic tool for endometriosis, enhancing diagnostic efficiency. The association of these genes with immune infiltrating cells reveals their potential role in the pathogenesis of endometriosis, providing new insights for early detection and treatment.
  6. Keun Seon J, Anwar Ayob K, Giun Noh M, Yeol Yang H
    Acta Orthop Traumatol Turc, 2024 Jan;58(1):68-72.
    PMID: 38525513 DOI: 10.5152/j.aott.2024.23115
    Oxidized zirconium (OxiniumTM) prostheses, made up of a metallic alloy of zirconium with a ceramic surface formed by oxidizing the outer layer, were developed as an alternative bearing surface to reduce polyethylene wear and decrease failure of total knee arthroplasty (TKA). We report a unique catastrophic failure of an Oxinium TKA with consequent accelerated wear and severe metallosis. Intraoperatively, we observed extensive wear grooving of the femoral component with exposure of the underlying silver layers and the complete wear of polyethylene on the medial side. Metallic debris had a peculiar arthrogram appearance, noted within the cut surface of the femur and tibia, indicative of the osteolysis that occurred, leading up to the failure of the implants. The histopathologic examination revealed a collection of macrophages with foreign-body reactions and black-pigmented metal-induced wear particles. Oxinium has clear benefits regarding superior wear properties; however, surgeons need to be aware that there is a risk of exposure to the underlying layers that may precede accelerated wear, deformation, and metallosis. Uncovering the deeper layers could result in the appearance of an arthrogram on plain radiographs. Early identification of polyethylene wear and prompt revision is crucial to avoid the rapid progression of subsequent metallosis and catastrophic implant failure, specifically when using oxidized zirconium components for TKA. To the best of our knowledge, this is the first report presenting a detailed histologic analysis to provide insight into the mechanisms of the failed Oxinium components.
  7. Ali MM, Lim KS, Yang HZ, Chong WY, Lim WS, Ahmad H
    Appl Opt, 2013 Aug 1;52(22):5393-7.
    PMID: 23913056 DOI: 10.1364/AO.52.005393
    This paper proposes an approach based on an optical imaging technique for the period measurement of fiber Bragg gratings (FBG). The simple, direct technique involves a differential interface contrast (DIC) microscope and a high-resolution CCD camera. Image processing is performed on the microscope images to obtain low-noise grating profiles and then the grating periods. Adopting a large image sample size in the image processing can reduce uncertainty. During the investigation, FBGs of different grating periods are fabricated by prestraining the photosensitive fibers during the UV-writing process. A good linearity between the measured Bragg wavelengths and grating periods is observed and the measured strain-optics coefficient was found to be in agreement with reported literature.
  8. Yang F, He JF, Xian HX, Zhang HL, He YQ, Yang H, et al.
    Zhonghua Yu Fang Yi Xue Za Zhi, 2009 Sep;43(9):798-802.
    PMID: 20137564
    To isolate and identify the pathogen of Dengue fever from Shenzhen city in 2005 - 2006, and to analyze the molecular characteristics of the isolated Dengue virus strain as well as to explore its possible origin.
  9. Choi JR, Hu J, Wang S, Yang H, Wan Abas WA, Pingguan-Murphy B, et al.
    Crit Rev Biotechnol, 2017 Feb;37(1):100-111.
    PMID: 26912259
    Dengue endemic is a serious healthcare concern in tropical and subtropical countries. Although well-established laboratory tests can provide early diagnosis of acute dengue infections, access to these tests is limited in developing countries, presenting an urgent need to develop simple, rapid, and robust diagnostic tools. Point-of-care (POC) devices, particularly paper-based POC devices, are typically rapid, cost-effective and user-friendly, and they can be used as diagnostic tools for the prompt diagnosis of dengue at POC settings. Here, we review the importance of rapid dengue diagnosis, current dengue diagnostic methods, and the development of paper-based POC devices for diagnosis of dengue infections at the POC.
  10. Roh YH, Yoo SJ, Choi YH, Yang HC, Nam KW
    Malays Orthop J, 2020 Nov;14(3):32-41.
    PMID: 33403060 DOI: 10.5704/MOJ.2011.007
    Introduction: The symptoms of Ischiogluteal Bursitis (IGB) are often nonspecific and atypical, and its diagnosis is more challenging. Moreover, it is difficult to predict cases of chronic progression or poor treatment response. Therefore, the aim of this study was to investigate the clinical course of IGB patients and identify factors that are predictive of failure of conservative treatment.

    Materials and Methods: Our study consisted of IGB patients diagnosed between 2010 March and 2016 December who had been followed-up for at least one year. Structured questionnaires and medical records were reviewed to analyse demographic characteristics, lifestyle patterns, blood tests, and imaging studies. We categorized the cases into two groups based on the response to conservative treatment and the need for surgical intervention.

    Results: The most common initial chief symptoms were buttock pains in 24 patients (37.5%). Physical examinations showed the tenderness of ischial tuberosity area in 59 (92.2%) patients, but no specific findings were confirmed in 5 patients (7.8%). 51 patients (79.7%) responded well to the conservative management, 11 patients (17.2%) needed injection, and 2 patients (3.1%) had surgical treatment performed due to continuous recurrence. There was no difference in demographic and blood lab data between the two groups. However, the incidence of inflammatory diseases (response group: 10.3% vs non-response group: 66.7%, p=0.004) was significantly different between the two groups.

    Conclusion: The diagnosis of IGB can be missed due to variations in clinical symptoms, and cautions should be exercised in patients with inflammatory diseases as conservative treatment is less effective in them, leading to chronic progression of IGB.

  11. Tan JH, Low PS, Tan YS, Tong MC, Saha N, Yang H, et al.
    Hum Genet, 2003 Jul;113(2):106-17.
    PMID: 12709788
    Mutations in the ATP-binding cassette transporter ABCA1 underlie Tangier disease and familial hypoalphaliproteinemia (FHA), disorders that are characterised by reduced high-density lipoprotein-cholesterol (HDL-C) concentration and cholesterol efflux, and increased coronary artery disease (CAD). We explored if polymorphisms in the ABCA1 gene are associated with CAD and variations in plasma lipid levels, especially HDL-C, and whether the associations may depend on ethnicity. Male cases and controls from the Singapore Chinese, Malay and Indian populations were genotyped for five ABCA1 single nucleotide polymorphisms. Various single-locus frequency distribution differences between cases and controls were detected in different ethnic groups: the promoter -14C>T in Indians, exon 18 M883I in Malays, and 3'-untranslated (UTR) region 8994A>G in Chinese. For the Malay population, certain haplotypes carrying the I825- A (exon 17) and M883- G alleles were more frequent among cases than controls, whereas the converse was true for the alternative configuration of V825- G and I883- A, and this association was reinforced in multi-locus disequilibrium analysis that utilized genotypic data. In the healthy controls, associations were found for -14C>T genotypes with HDL-C in Chinese; 237indelG (5'UTR) with apolipoprotein A1 (apoA1) in Malays and total cholesterol (TC) in Indians; M883I with lipoprotein(a) [Lp(a)] in Malays and apolipoprotein B (apoB) in Chinese; and 8994A>G with Lp(a) in Malays, and TC, low-density lipoprotein-cholesterol (LDL-C) as well as apoB in Indians. While genotype-phenotype associations were not reproduced across populations and loci, V825I and M883I were clearly associated with CAD status in Malays with no effects on HDL-C or apoA1.
  12. Sun C, Zhang X, Lee WG, Tu Y, Li H, Cai X, et al.
    J Orthop Surg Res, 2020 Aug 05;15(1):297.
    PMID: 32758250 DOI: 10.1186/s13018-020-01823-2
    BACKGROUND: The infrapatellar fat pad (IPFP) or Hoffa's fat pad is often resected during total knee arthroplasty in order to improve visibility. However, the management of the IPFP during total knee arthroplasty (TKA) is the subject of an ongoing debate that has no clear consensus. The purpose of this review was to appraise if resection of the IPFP affects clinical outcomes.

    METHODS: We conducted a meta-analysis to identify relevant randomized controlled trials involving infrapatellar fat pad resection and infrapatellar fat pad preservation during total knee arthroplasty in electronic databases, including Web of Science, Embase, PubMed, Cochrane Controlled Trials Register, Cochrane Library, Highwire, CBM, CNKI, VIP, and Wanfang database, up to March 2020.

    RESULTS: Nine randomized controlled trials, involving 783 TKAs (722 patients), were included in the systematic review. Outcome measures included patellar tendon length (PTL), Insall-Salvati ratio (ISR), rate of anterior knee pain, Knee Society Scores (KSS), and knee range of motion. The meta-analysis identified a trend toward the shortening of the patellar tendon with IPFP resection at 6 months (P = 0.0001) and 1 year (P = 0.001). We found no statistical difference in ISR (P = 0.87), rate of anterior knee pain within 6 months (p = 0.45) and 1 year (p = 0.38), KSS at 1 year (p = 0.77), and knee range of motion within 6 months (p = 0.61) and 1 year (0.46).

    CONCLUSION: Based on the available level I evidence, we were unable to conclude that one surgical technique of IPFP can definitively be considered superior over the other. More adequately powered and better-designed randomized controlled trial (RCT) studies with long-term follow-up are required to produce evidence-based guidelines regarding IPFP resection.

  13. Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 02 05;403:123658.
    PMID: 33264867 DOI: 10.1016/j.jhazmat.2020.123658
    There is a global need to use plants to restore the ecological environment. There is no systematic review of phytoremediation mechanisms and the parameters for environmental pollution. Here, we review this situation and describe the purification rate of different plants for different pollutants, as well as methods to improve the purification rate of plants. This is needed to promote the use of plants to restore the ecosystems and the environment. We found that plants mainly use their own metabolism including the interaction with microorganisms to repair their ecological environment. In the process of remediation, the purification factors of plants are affected by many conditions such as light intensity, stomatal conductance, temperature and microbial species. In addition the efficiency of phytoremediation is depending on the plants species-specific metabolism including air absorption and photosynthesis, diversity of soil microorganisms and heavy metal uptake. Although the use of nanomaterials and compost promote the restoration of plants to the environment, a high dose may have negative impacts on the plants. In order to improve the practicability of the phytoremediation on environmental restoration, further research is needed to study the effects of different kinds of catalysts on the efficiency of phytoremediation. Thus, the present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.
  14. Wang Y, Van Le Q, Yang H, Lam SS, Yang Y, Gu H, et al.
    Chemosphere, 2021 Oct;281:130835.
    PMID: 33992848 DOI: 10.1016/j.chemosphere.2021.130835
    The increase in global population size over the past 100 decades has doubled the requirements for energy resources. To mitigate the limited fossil fuel available, new clean energy sources being environmental sustainable for replacement of traditional energy sources are explored to supplement the current scarcity. Biomass containing lignin and cellulose is the main raw material to replace fossil energy given its abundance and lower emission of greenhouse gases and NOx when transformed into energy. Bacteria, fungi and algae decompose lignocellulose leading to generation of hydrogen, methane, bioethanol and biodiesel being the clean energy used for heating, power generation and the automobile industry. Microbial Fuel Cell (MFC) uses microorganisms to decompose biomass in wastewater to generate electricity and remove heavy metals in wastewater. Biomass contains cellulose, hemicellulose, lignin and other biomacromolecules which need hydrolyzation for conversion into small molecules by corresponding enzymes in order to be utilized by microorganisms. This paper discusses microbial decomposition of biomass into clean energy and the five major ways of clean energy production, and its economic benefits for future renewable energy security.
  15. Lim KL, Wong CY, Wong WY, Loh KS, Selambakkannu S, Othman NAF, et al.
    Membranes (Basel), 2021 May 27;11(6).
    PMID: 34072048 DOI: 10.3390/membranes11060397
    This review discusses the roles of anion exchange membrane (AEM) as a solid-state electrolyte in fuel cell and electrolyzer applications. It highlights the advancement of existing fabrication methods and emphasizes the importance of radiation grafting methods in improving the properties of AEM. The development of AEM has been focused on the improvement of its physicochemical properties, including ionic conductivity, ion exchange capacity, water uptake, swelling ratio, etc., and its thermo-mechano-chemical stability in high-pH and high-temperature conditions. Generally, the AEM radiation grafting processes are considered green synthesis because they are usually performed at room temperature and practically eliminated the use of catalysts and toxic solvents, yet the final products are homogeneous and high quality. The radiation grafting technique is capable of modifying the hydrophilic and hydrophobic domains to control the ionic properties of membrane as well as its water uptake and swelling ratio without scarifying its mechanical properties. Researchers also showed that the chemical stability of AEMs can be improved by grafting spacers onto base polymers. The effects of irradiation dose and dose rate on the performance of AEM were discussed. The long-term stability of membrane in alkaline solutions remains the main challenge to commercial use.
  16. Liu H, Yang H, Qiao X, Wang Y, Liu X, Lee YS, et al.
    Sensors (Basel), 2017 Jul 27;17(8).
    PMID: 28749437 DOI: 10.3390/s17081725
    We have experimentally demonstrated an optical fiber Mach-Zehnder interferometer (MZI) structure formed by a few-mode photonic crystal fiber (PCF) for curvature measurement and inscribed a fiber Bragg grating (FBG) in the PCF for the purpose of simultaneously measuring temperature. The structure consists of a PCF sandwiched between two multi-mode fibers (MMFs). Bending experimental results show that the proposed sensor has a sensitivity of -1.03 nm/m-1at a curvature range from 10 m-1to 22.4 m-1, and the curvature sensitivity of the embedded FBG was -0.003 nm/m-1. Temperature response experimental results showed that the MZI's wavelength, λa, has a sensitivity of 60.3 pm/°C, and the FBG's Bragg wavelength, λb, has sensitivity of 9.2 pm/°C in the temperature range of 8 to 100 °C. As such, it can be used for simultaneous measurement of curvature and temperature over ranges of 10 m-1to 22.4 m-1and 8 °C to 100 °C, respectively. The results show that the embedded FBG can be a good indicator to compensate the varying ambient temperature during a curvature measurement.
  17. Lin F, Yang H, Zhang L, Fang SH, Zhan XF, Yang LY
    Arch Virol, 2019 Aug;164(8):2131-2135.
    PMID: 31102050 DOI: 10.1007/s00705-019-04266-1
    A large-scale dengue fever (DF) outbreak occurred in Chaozhou, Guangdong province, China 2015. In our study, 528 dengue-positive patient samples were collected for clinical and laboratory data analysis. 491 cases (93.0%) were primary dengue fever (PDF), 22 cases (4.2%) were dengue hemorrhagic fever (DHF) and 15 cases (2.8%) were diagnosed with severe dengue fever (SDF). All cases were infected by dengue virus serotype 2 (DENV-2), and the isolated strains belonged to cosmopolitan genotype, which were grouped closely with Malaysia strains from 2010 to 2014. Moreover, the study showed that laboratory indices have significantly difference in PDF, DHF and SDF patients. A comprehensive analysis of these data could assist and guide the clinical diagnosis for DF, which has an important significance for the control of dengue virus infection.
  18. Chen N, Yang H, Li Q, Song L, Gopinath SCB, Wu D
    Biotechnol Appl Biochem, 2021 Dec;68(6):1479-1485.
    PMID: 33244818 DOI: 10.1002/bab.2068
    Rheumatoid arthritis (RA) is an autoimmune disorder causing chronic inflammation in the small joints of the articular bone and destruction of articular cartilage. RA causes stiffness, pain, joint destruction, substantial comorbidity, and functional disability. Early-stage diagnosis of RA can help in the treatment of the disease and expand the patient life span. Interleukins are a group of inflammatory cytokines; in particular, an abundance of interleukin-6 (IL-6) was found in the synovial fluid and serum. In RA patients, the levels of IL-6 have been found to be correlated with the disease, and this work focused on detecting IL-6 by its aptamer with the help of a biotin-streptavidin strategy on an interdigitated electrode. A sensitivity of 1 fM (0.021 pg/mL) and a limit of detection of 10 fM (0.21 pg/mL) were found by a linear regression [y = 0.6413x - 0.6249; R² = 0.952] of the linear range from 1 fM to 100 pM. This method enhanced the immobilization of higher aptamer molecules for recognizing RA in serum-containing samples and is applicable to other diseases.
  19. Yang H, Wang Y, Tiu ZC, Tan SJ, Yuan L, Zhang H
    Micromachines (Basel), 2022 Jan 07;13(1).
    PMID: 35056256 DOI: 10.3390/mi13010092
    In the advancement of photonics technologies, all-optical systems are highly demanded in ultrafast photonics, signal processing, optical sensing and optical communication systems. All-optical devices are the core elements to realize the next generation of photonics integration system and optical interconnection. Thus, the exploration of new optoelectronics materials that exhibit different optical properties is a highlighted research direction. The emerging two-dimensional (2D) materials such as graphene, black phosphorus (BP), transition metal dichalcogenides (TMDs) and MXene have proved great potential in the evolution of photonics technologies. The optical properties of 2D materials comprising the energy bandgap, third-order nonlinearity, nonlinear absorption and thermo-optics coefficient can be tailored for different optical applications. Over the past decade, the explorations of 2D materials in photonics applications have extended to all-optical modulators, all-optical switches, an all-optical wavelength converter, covering the visible, near-infrared and Terahertz wavelength range. Herein, we review different types of 2D materials, their fabrication processes and optical properties. In addition, we also summarize the recent advances of all-optical modulation based on 2D materials. Finally, we conclude on the perspectives on and challenges of the future development of the 2D material-based all-optical devices.
  20. Engels S, Fong LSRZ, Chen Q, Leng MJ, McGowan S, Idris M, et al.
    Environ Pollut, 2018 Apr;235:907-917.
    PMID: 29353806 DOI: 10.1016/j.envpol.2018.01.007
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links