Displaying publications 1 - 20 of 250 in total

  1. Yang YF, Chong HH, Yang YK
    Med J Malaysia, 2001 Mar;56(1):104-5.
    PMID: 11503288
  2. Zhou LX, Xiao Y, Xia W, Yang YD
    Genet. Mol. Res., 2015;14(4):16247-54.
    PMID: 26662418 DOI: 10.4238/2015.December.8.15
    Genetic diversity and patterns of population structure of the 94 oil palm lines were investigated using species-specific simple sequence repeat (SSR) markers. We designed primers for 63 SSR loci based on their flanking sequences and conducted amplification in 94 oil palm DNA samples. The amplification result showed that a relatively high level of genetic diversity was observed between oil palm individuals according a set of 21 polymorphic microsatellite loci. The observed heterozygosity (Ho) was 0.3683 and 0.4035, with an average of 0.3859. The Ho value was a reliable determinant of the discriminatory power of the SSR primer combinations. The principal component analysis and unweighted pair-group method with arithmetic averaging cluster analysis showed the 94 oil palm lines were grouped into one cluster. These results demonstrated that the oil palm in Hainan Province of China and the germplasm introduced from Malaysia may be from the same source. The SSR protocol was effective and reliable for assessing the genetic diversity of oil palm. Knowledge of the genetic diversity and population structure will be crucial for establishing appropriate management stocks for this species.
  3. Song F, Yang Y, Gopinath SCB
    Biotechnol Appl Biochem, 2021 Jun;68(3):683-689.
    PMID: 32628799 DOI: 10.1002/bab.1980
    A high-performance interdigitated electrode (IDE) biosensing surface was reported here by utilizing self-assembled silica nanoparticle (SiNP). The modified surface was used to evaluate the complementation of hairpin forming region from Mitoxantrone resistance gene 7 (MXR7; liver cancer-related short gene). The conjugated SiNPs on 3-aminopropyl triethoxysilane functionalization were captured with probe sequence on IDE biosensing surface. The physical and chemically modified surface was used to quantify MXR7 and an increment in the current response upon complementation was noticed. Limit of target DNA detection was calculated (1-10 fM) and this label-free detection is at the comparable level to the fluorescent-based sensing. A linear regression was calculated [y = 0.243x - 0.0773; R² = 0.9336] and the sensitivity was 1 fM on the linear range of 1 fM to 10 pM. With the strong attachment of capture DNA on IDE through SiNP, the surface clearly discriminates the specificity (complementary) versus nonspecificity (complete-, single-, and triple-mismatched sequences). This detection strategy helps to determine liver cancer progression and the similar strategy can be followed for other gene sequence complementation.
  4. Yang Y, Li G, Su Z, Yuan Y
    Front Psychol, 2021;12:651608.
    PMID: 34603116 DOI: 10.3389/fpsyg.2021.651608
    Positive teacher-student interaction can exert a positive influence on student engagement and math performance. As an important part of teacher-student interaction, emotional support of a teacher plays an indispensable role in the math performance of junior middle school and elementary school students. This study aimed to explore the effects of teacher's emotional support on math performance, and examine the mediating role of academic self-efficacy and math behavioral engagement. A total of 1,294 students in grades 3-5 and 7-8 from 14 junior middle and primary schools in China took part in the web-based survey. Results showed the following: (1) academic self-efficacy mediated the relationship between teacher's emotional support and math performance of Chinese primary and middle school boys and girls; math behavioral engagement mediated the relationship between teacher's emotional support and math performance of Chinese primary and middle school boys and girls; (2) The relationship between teacher's emotional support and math performance of Chinese junior middle school boys and girls was mediated by the chain of academic self-efficacy and math behavioral engagement.
  5. Luo J, Wang X, Yang Y, Lan T, Ashraf MA, Mao Q
    West Indian Med J, 2015 12;64(5):540-542.
    PMID: 27399315 DOI: 10.7727/wimj.2016.059
    We report a case of a patient with AIDS and a brain abscess caused by aspergillus, who underwent neurosurgical excision of the lesion and received subsequent therapy with voriconazole. The patient suffered from intracranial hypertension and visual disorders.
  6. Law JX, Liau LL, Saim A, Yang Y, Idrus R
    Tissue Eng Regen Med, 2017 Dec;14(6):699-718.
    PMID: 30603521 DOI: 10.1007/s13770-017-0075-9
    Electrospinning is a simple and versatile technique to fabricate continuous fibers with diameter ranging from micrometers to a few nanometers. To date, the number of polymers that have been electrospun has exceeded 200. In recent years, electrospinning has become one of the most popular scaffold fabrication techniques to prepare nanofiber mesh for tissue engineering applications. Collagen, the most abundant extracellular matrix protein in the human body, has been electrospun to fabricate biomimetic scaffolds that imitate the architecture of native human tissues. As collagen nanofibers are mechanically weak in nature, it is commonly cross-linked or blended with synthetic polymers to improve the mechanical strength without compromising the biological activity. Electrospun collagen nanofiber mesh has high surface area to volume ratio, tunable diameter and porosity, and excellent biological activity to regulate cell function and tissue formation. Due to these advantages, collagen nanofibers have been tested for the regeneration of a myriad of tissues and organs. In this review, we gave an overview of electrospinning, encompassing the history, the instrument settings, the spinning process and the parameters that affect fiber formation, with emphasis given to collagen nanofibers' fabrication and application, especially the use of collagen nanofibers in skin tissue engineering.
  7. Wang Z, Lechner AM, Yang Y, Baumgartl T, Wu J
    Sci Total Environ, 2020 May 15;717:137214.
    PMID: 32062237 DOI: 10.1016/j.scitotenv.2020.137214
    Open-cut coal mining can seriously disturb and reshape natural landscapes which results in a range of impacts on local ecosystems and the services they provide. To address the negative impacts of disturbance, progressive rehabilitation is commonly advocated. However, there is little research focusing on how these impacts affect ecosystem services within mine sites and changes over time. The aim of this study was to assess the cumulative impacts of mining disturbance and rehabilitation on ecosystem services through mapping and quantifying changes at multiple spatial and temporal scales. Four ecosystem services including carbon sequestration, air quality regulation, soil conservation and water yield were assessed in 1989, 1997, 2005 and 2013. Disturbance and rehabilitation was mapped using LandTrendr algorithm with Landsat. We mapped spatial patterns and pixel values for each ecosystem service with corresponding model and the landscape changes were analyzed with landscape metrics. In addition, we assessed synergies and trade-offs using Spearman's correlation coefficient for different landscape classes and scales. The results showed that carbon sequestration, air quality regulation and water yield services were both positively and negatively affected by vegetation cover changes due to mined land disturbance and rehabilitation, while soil conservation service were mainly influenced by topographic changes. There were strong interactions between carbon sequestration, air quality regulation and water yield, which were steady among different spatial scales and landscape types. Soil conservation correlations were weak and changed substantially due to differences of spatial scales and landscape types. Although there are limitations associated with data accessibility, this study provides a new research method for mapping impacts of mining on ecosystem services, which offer spatially explicit information for decision-makers and environmental regulators to carry out feasible policies, balancing mining development with ecosystem services provision.
  8. Yakob M, Hassan YR, Tse KL, Gu M, Yang Y
    PMID: 28092164 DOI: 10.1597/16-191
    Objective To test the reliability of the modified Huddart-Bodenham (MHB) numerical scoring system and its agreement with the GOSLON Yardstick categorization for assessing the dental arch relationships in unilateral cleft lip and palate (UCLP) cases. Design A retrospective study. Setting Faculty of Dentistry, The University of Hong Kong. Patients Forty-one nonsyndromic UCLP consecutive patients attending the Joint Cleft Lip/Palate Clinic at Faculty of Dentistry in the University of Hong Kong were selected. Interventions Study models at 8 to 10 years old (T1) and 10 to 12 years old (T2) were obtained from each patient. Main Outcome Measures Models were rated with the MHB scoring system and GOSLON Yardstick index. The intra- and interexaminer reliabilities as well as correlation of both scoring systems were evaluated. Furthermore, to investigate the outcome measurements consistency, the MHB scoring system and GOSLON Yardstick were independently used to compare the dental arch relationships from T1 to T2, with the samples split into intervention and nonintervention groups. Results The MHB scoring system presented good intra- and interexaminer agreement, which were comparable to those of the GOSLON Yardstick. The correlation between the MHB scoring system and GOSLON Yardstick scores was good. Both scoring systems showed similar results when assessing the change in the dental arch relationships from T1 to T2. Conclusions The MHB scoring system can be used as an alternative method to the commonly used GOSLON Yardstick for assessing dental deformities in UCLP patients. Both scoring systems showed similar results in assessing the improvement in dental arch relationships.
  9. Ibahim MJ, Crosbie JC, Yang Y, Zaitseva M, Stevenson AW, Rogers PA, et al.
    PLoS One, 2014;9(6):e100547.
    PMID: 24945301 DOI: 10.1371/journal.pone.0100547
    High-dose synchrotron microbeam radiation therapy (MRT) has shown the potential to deliver improved outcomes over conventional broadbeam (BB) radiation therapy. To implement synchrotron MRT clinically for cancer treatment, it is necessary to undertake dose equivalence studies to identify MRT doses that give similar outcomes to BB treatments.
  10. Yang Y, Fedorov G, Shafranjuk SE, Klapwijk TM, Cooper BK, Lewis RM, et al.
    Nano Lett., 2015 Dec 09;15(12):7859-66.
    PMID: 26506109 DOI: 10.1021/acs.nanolett.5b02564
    Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
  11. Ibahim MJ, Crosbie JC, Paiva P, Yang Y, Zaitseva M, Rogers PA
    Radiat Environ Biophys, 2016 May;55(2):185-94.
    PMID: 26994995 DOI: 10.1007/s00411-016-0641-x
    The xCELLigence real-time cell impedance system uses a non-invasive and label-free method to create a cell index that is a composite measure of cell proliferation. The aim of this study was to evaluate xCELLigence against clonogenic assay (gold standard) for measuring radiobiological effects and radiation-induced bystander effects (RIBE). A radiobiological study was conducted by irradiating EMT6.5, 4T1.2 and NMUMG cell lines with different radiation doses, while a RIBE study was done using transfer of conditioned media (CM) harvested from donor to the same type of recipient cell (EMT6.5, 4T1.2, NMUMG, HACAT and SW48). CM was harvested using two protocols which differed in the dose chosen and the exposure to the recipient cells. Results showed that xCELLigence measured a radiobiological effect which correlated with the clonogenic assay. For the RIBE study, no statistically significant differences were observed between xCELLigence or clonogenic survival in control or recipient cells incubated with CM in protocol one. However, there was a significant increase in cell index slope using CM from EMT-6.5 cells irradiated at 7.5 Gy compared with the control group under the second protocol. No other evidence of RIBE was detected by either xCELLigence or clonogenic assay. In conclusion, xCELLigence methods can measure radiobiological effects and the results correlate with clonogenic assay. We observed a lack of RIBE in all tested cell lines with the clonogenic assay; however, we observed a RIBE effect in EMT6.5 cells under one particular protocol that showed RIBE is cell type dependent, is not universally observed and can be detected in different assays.
  12. Law JX, Musa F, Ruszymah BH, El Haj AJ, Yang Y
    Med Eng Phys, 2016 Sep;38(9):854-61.
    PMID: 27349492 DOI: 10.1016/j.medengphy.2016.05.017
    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength.
  13. Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, et al.
    BMC Evol. Biol., 2017 01 18;17(1):22.
    PMID: 28100168 DOI: 10.1186/s12862-016-0849-z
    BACKGROUND: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation.

    RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes.

    CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.

  14. Doss JG, Ghani WMN, Razak IA, Yang YH, Rogers SN, Zain RB
    Int J Oral Maxillofac Surg, 2017 Jun;46(6):687-698.
    PMID: 28318871 DOI: 10.1016/j.ijom.2017.02.1269
    This study aimed to assess changes in oral cancer patients' health-related quality of life (HRQOL) and the impact of disease stage on HRQOL scores. HRQOL data were collected from seven hospital-based centres using the Functional Assessment of Cancer Therapy-Head and Neck (FACT-H&N) version 4.0 instrument. The independent samples t-test, χ(2) test, and paired samples t-test were used to analyse the data. A total of 300 patients were recruited. The most common oral cancer sub-site was tongue and floor of mouth (42.6%). Surgical intervention (41.1%) was the most common treatment modality. Significant differences in ethnicity and treatment modality were observed between early and late stage patients. Pre-treatment HRQOL scores were significantly lower for late than early stage patients. At 1 month post-treatment, the functional and head and neck domains and the FACT-H&N (TOI) summary scores showed significant deterioration in both early and late stage patients. In contrast, the emotional domain showed a significant improvement for early and late stage patients at 1, 3, and 6 months post-treatment. Although HRQOL deterioration was still observed among early and late stage patients at 6 months post-treatment, this was not statistically significant. In conclusion, advanced disease is associated with poorer HRQOL. Although ethnic differences were observed across different disease stages, the influence of ethnicity on patient HRQOL was not evident in this study.
  15. Liu X, Yu X, Yang Y, Heeb S, Gao S, Chan KG, et al.
    Appl Microbiol Biotechnol, 2018 Apr;102(8):3711-3721.
    PMID: 29511844 DOI: 10.1007/s00253-018-8857-0
    The antibiotic pyrrolnitrin (PRN) is a tryptophan-derived secondary metabolite that plays an important role in the biocontrol of plant diseases due to its broad-spectrum of antimicrobial activities. The PRN biosynthetic gene cluster remains to be characterised in Serratia plymuthica, though it is highly conserved in PRN-producing bacteria. To better understand PRN biosynthesis and its regulation in Serratia, the prnABCD operon from S. plymuthica G3 was cloned, sequenced and expressed in Escherichia coli DH5α. Furthermore, an engineered strain prnind which is a conditional mutant of G3 prnABCD under the control of the Ptac promoter was constructed. This mutant was able to overproduce PRN with isopropylthiogalactoside (IPTG) induction by overexpressing prnABCD, whilst behaving as a conditional mutant of G3 prnABCD in the absence of IPTG. These results confirmed that prnABCD is responsible for PRN biosynthesis in strain G3. Further experiments involving lux-/dsRed-based promoter fusions, combined with site-directed mutagenesis of the putative σS extended -10 region in the prnA promoter, and liquid chromatography-mass spectrometry (LC-MS) analysis extended our previous knowledge about G3, revealing that quorum sensing (QS) regulates PRN biosynthesis through cross talk with RpoS, which may directly activated prnABCD transcription. These findings suggest that PRN in S. plymuthica G3 is produced in a tightly controlled manner, and has diverse functions, such as modulation of cell motility, in addition to antimicrobial activities. Meanwhile, the construction of inducible mutants could be a powerful tool to improve PRN production, beyond its potential use for the investigation of the biological function of PRN.
  16. Wei R, Lim CY, Yang Y, Tang XD, Yan TQ, Yang RL, et al.
    Orthop Surg, 2021 Apr;13(2):553-562.
    PMID: 33665985 DOI: 10.1111/os.12918
    OBJECTIVES: This study aims to: (i) evaluate the outcome of patients with Harrington class III lesions who were treated according to Harrington classification; (ii) propose a modified surgical classification for Harrington class III lesions; and (iii) assess the efficiency of the proposed modified classification.

    METHODS: This study composes two phases. During phase 1 (2006 to 2011), the clinical data of 16 patients with Harrington class III lesions who were treated by intralesional excision followed by reconstruction of antegrade/retrograde Steinmann pins/screws with cemented total hip arthroplasty (Harrington/modified Harrington procedure) were retrospectively reviewed and further analyzed synthetically to design a modified surgical classification system. In phase 2 (2013 to 2019), 62 patients with Harrington class III lesions were classified and surgically treated according to our modified classification. Functional outcome was assessed using the Musculoskeletal Tumor Society (MSTS) 93 scoring system. The outcome of local control was described using 2-year recurrence-free survival (RFS). Owing to the limited sample size, we considered P 

  17. Yang Y, Østbye T, Tan SB, Abdul Salam ZH, Ong BC, Yang KS
    J Diabetes Complications, 2011 Nov-Dec;25(6):382-6.
    PMID: 21983153 DOI: 10.1016/j.jdiacomp.2011.08.002
    Among other risk factors, renal disease and ethnicity have been associated with diabetic lower extremity amputation (LEA) in Western populations. However, little is known about risk factors for LEA among Asian patients.

    The objective was to assess the proportion of hospitalized patients with diabetes who have a LEA among all hospital patients with diabetes mellitus (DM) and to investigate risk factors for diabetic LEA (especially renal disease and ethnicity) using hospital discharge database.

    A retrospective study of hospital discharge database (2004-2009) was performed to identify patients with DM, LEA and renal disease using the International Statistical Classification of Diseases and Related Health Problems, Ninth Revision, Australian Modification codes.

    Of 44 917 hospitalized patients with DM during the 6 years, 7312 (16.3%) patients had renal disease, and 1457 (3.2%) patients had LEA. DM patients with renal disease had significant higher rates of LEA (7.1%) compared to DM patients without renal disease (2.5%, P < .001). The differences were present for foot (2.7% vs. 1.2%), ankle or leg (2.8% vs. 0.9%), and knee or above amputation (1.6% vs. 0.4%, all P
  18. Yang Y, Mi J, Liang J, Liao X, Ma B, Zou Y, et al.
    Front Microbiol, 2019;10:2506.
    PMID: 31736928 DOI: 10.3389/fmicb.2019.02506
    Despite our continuous improvement in understanding the evolution of antibiotic resistance, the changes in the carbon metabolism during the evolution of antibiotic resistance remains unclear. To investigate the evolution of antibiotic resistance and the changes in carbon metabolism under antibiotic pressure, Escherichia coli K-12 was evolved for 38 passages under a concentration gradient of doxycycline (DOX). The 0th-passage sensitive strain W0, the 20th-passage moderately resistant strain M20, and the 38th-passage highly resistant strain E38 were selected for the determination of biofilm formation, colony area, and carbon metabolism levels, as well as genome and transcriptome sequencing. The MIC of DOX with E. coli significantly increased from 4 to 96 μg/ml, and the IC50 increased from 2.18 ± 0.08 to 64.79 ± 0.75 μg/ml after 38 passages of domestication. Compared with the sensitive strain W0, the biofilm formation amount of the resistant strains M20 and E38 was significantly increased (p < 0.05). Single-nucleotide polymorphisms (SNPs) were distributed in antibiotic resistance-related genes such as ribosome targets, cell membranes, and multiple efflux pumps. In addition, there were no mutated genes related to carbon metabolism. However, the genes involved in the biosynthesis of secondary metabolites and carbon metabolism pathway were downregulated, showing a significant decrease in the metabolic intensity of 23 carbon sources (p < 0.05). The results presented here show that there may be a correlation between the evolution of E. coli DOX resistance and the decrease of carbon metabolism, and the mechanism was worthy of further research, providing a theoretical basis for the prevention and control of microbial resistance.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links