Displaying all 2 publications

Abstract:
Sort:
  1. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK
    Proc Inst Mech Eng H, 2014 Oct;228(10):1083-99.
    PMID: 25406229 DOI: 10.1177/0954411914556137
    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
  2. Harith H, Schmutz B, Malekani J, Schuetz MA, Yarlagadda PK
    Med Eng Phys, 2016 Mar;38(3):280-5.
    PMID: 26739124 DOI: 10.1016/j.medengphy.2015.11.012
    Anatomically precontoured plates are commonly used to treat periarticular fractures. A well-fitting plate can be used as a tool for anatomical reduction of the fractured bone. Recent studies highlighted that some plates fit poorly for many patients due to considerable shape variations between bones of the same anatomical site. While it is impossible to design one shape that fits all, it is also burdensome for the manufacturers and hospitals to produce, store and manage multiple plate shapes without the certainty of utilization by a patient population. In this study, we investigated the number of shapes required for maximum fit within a given dataset, and if they could be obtained by manually deforming the original plate. A distal medial tibial plate was automatically positioned on 45 individual tibiae, and the optimal deformation was determined iteratively using finite element analysis simulation. Within the studied dataset, we found that: (i) 89% fit could be achieved with four shapes, (ii) 100% fit was impossible through mechanical deformation, and (iii) the deformations required to obtain the four plate shapes were safe for the stainless steel plate for further clinical use. The proposed framework is easily transferable to other orthopaedic plates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links