Displaying all 19 publications

  1. Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM
    Int J Biol Macromol, 2020 Nov 15;163:756-765.
    PMID: 32634511 DOI: 10.1016/j.ijbiomac.2020.07.014
    In this research, an attempt to develop zwitterion composite adsorbent is conducted by modifying chitosan (CHS) with a covalent cross-linker (epichlorohydrin, ECH) and an aluminosilicate mineral (zeolite, ZL). The zwitterion composite adsorbent of chitosan-epichlorohydrin/zeolite (CHS-ECH/ZL) is performed multifunctional tasks by removing two structurally different cationic (methylene blue dye, MB), and anionic (reactive red 120 dye, RR120) dyes from aqueous solutions. The surface property, crystallinity, morphology, functionality, and charge of the CHS-ECH/ZL are analyzed using BET, XRD, SEM, FTIR, and pHpzc, analyses, respectively. The influence of pertinent parameters namely CHS-ECH/ZL dosage (0.02-0.5 g), solution pH (4-10), temperature (303-323K), initial dye concentration (30-400 mg/L), and contact time (0-600 min) on the MB and RR120 removal are tested. The research findings revealed that the adsorption isotherm at equilibrium well explained in according to the Freundlich isotherm model, and the recorded adsorption capacities of CHS-ECH/ZL are 156.1 and 284.2 mg/g for MB and RR120 respectively at 30 °C. The mechanism of MB and RR120 adsorption onto the CHS-ECH/ZL indicates various types of interactions namely, electrostatic interaction, hydrogen bonding, and Yoshida H-bonding in addition to n-π interaction. Overall, this research introduces CHS-ECH/ZL composite as an eco-friendly zwitterion adsorbent with good applicability towards the two structurally different cationic and anionic dyes from aqueous environment.
  2. Yaseen ZM, Ali M, Sharafati A, Al-Ansari N, Shahid S
    Sci Rep, 2021 Feb 09;11(1):3435.
    PMID: 33564055 DOI: 10.1038/s41598-021-82977-9
    A noticeable increase in drought frequency and severity has been observed across the globe due to climate change, which attracted scientists in development of drought prediction models for mitigation of impacts. Droughts are usually monitored using drought indices (DIs), most of which are probabilistic and therefore, highly stochastic and non-linear. The current research investigated the capability of different versions of relatively well-explored machine learning (ML) models including random forest (RF), minimum probability machine regression (MPMR), M5 Tree (M5tree), extreme learning machine (ELM) and online sequential-ELM (OSELM) in predicting the most widely used DI known as standardized precipitation index (SPI) at multiple month horizons (i.e., 1, 3, 6 and 12). Models were developed using monthly rainfall data for the period of 1949-2013 at four meteorological stations namely, Barisal, Bogra, Faridpur and Mymensingh, each representing a geographical region of Bangladesh which frequently experiences droughts. The model inputs were decided based on correlation statistics and the prediction capability was evaluated using several statistical metrics including mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), correlation coefficient (R), Willmott's Index of agreement (WI), Nash Sutcliffe efficiency (NSE), and Legates and McCabe Index (LM). The results revealed that the proposed models are reliable and robust in predicting droughts in the region. Comparison of the models revealed ELM as the best model in forecasting droughts with minimal RMSE in the range of 0.07-0.85, 0.08-0.76, 0.062-0.80 and 0.042-0.605 for Barisal, Bogra, Faridpur and Mymensingh, respectively for all the SPI scales except one-month SPI for which the RF showed the best performance with minimal RMSE of 0.57, 0.45, 0.59 and 0.42, respectively.
  3. Alavi J, Ewees AA, Ansari S, Shahid S, Yaseen ZM
    PMID: 34741267 DOI: 10.1007/s11356-021-17190-2
    Accurate prediction of inlet chemical oxygen demand (COD) is vital for better planning and management of wastewater treatment plants. The COD values at the inlet follow a complex nonstationary pattern, making its prediction challenging. This study compared the performance of several novel machine learning models developed through hybridizing kernel-based extreme learning machines (KELMs) with intelligent optimization algorithms for the reliable prediction of real-time COD values. The combined time-series learning method and consumer behaviours, estimated from water-use data (hour/day), were used as the supplementary inputs of the hybrid KELM models. Comparison of model performances for different input combinations revealed the best performance using up to 2-day lag values of COD with the other wastewater properties. The results also showed the best performance of the KELM-salp swarm algorithm (SSA) model among all the hybrid models with a minimum root mean square error of 0.058 and mean absolute error of 0.044.
  4. Sa'adi Z, Yaseen ZM, Muhammad MKI, Iqbal Z
    PMID: 34993788 DOI: 10.1007/s11356-021-17917-1
    Tropical peatlands have high potential function as a major source of atmospheric methane (CH4) and can contribute to global warming due to their large soil carbon stock, high groundwater level (GWL), high humidity and high temperature. In this study, a process-based denitrification-decomposition (DNDC) model was used to simulate CH4 fluxes in a pristine tropical peatland in Sarawak. To test the accuracy of the model, eddy covariance tower datasets were compared. The model was validated for the year 2014, which showed the good performance of the model for simulating CH4 emissions. The monthly predictive ability of the model was better than the daily predictive ability, with a determination coefficient (R2) of 0.67, model error (ME) of 2.47, root mean square error (RMSE) of 3.33, mean absolute error (MAE) of 2.92 and mean square error (MSE) of 11.08. The simulated years of 2015 and 2016 showed the good performance of the DNDC model, although under- and overestimations were found during the drier and rainy months. Similarly, the monthly simulations for the year were better than the daily simulations for the year, showing good correlations at R2 at 0.84 (2015) and 0.87 (2016). Better statistical performance in terms of monthly ME, RMSE, MAE and MSE at - 0.11, 3.38, 3.05 and 11.45 for 2015 and - 1.14, 5.28, 4.93 and 27.83 for 2016, respectively, was also observed. Although the statistical performance of the model simulation for daily average CH4 fluxes was lower than that of the monthly average, we found that the results for total fluxes agreed well between the observed and the simulated values (E = 6.79% and difference = 3.3%). Principal component analysis (PCA) showed that CH4, GWL and rainfall were correlated with each other and explained 41.7% of the total variation. GWL was found to be relatively important in determining the CH4 fluxes in the naturally inundated pristine tropical peatland. These results suggest that GWL is an essential input variable for the DNDC model for predicting CH4 fluxes from the pristine tropical peatland in Sarawak on a monthly basis.
  5. Tao H, Bobaker AM, Ramal MM, Yaseen ZM, Hossain MS, Shahid S
    Environ Sci Pollut Res Int, 2019 Jan;26(1):923-937.
    PMID: 30421367 DOI: 10.1007/s11356-018-3663-x
    Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and non-point sources of pollutions. Determination of water quality variables using mathematical models instead of laboratory experiments can have venerable significance in term of the environmental prospective. In this research, application of a new developed hybrid response surface method (HRSM) which is a modified model of the existing response surface model (RSM) is proposed for the first time to predict biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC), alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS) as input attributes. The monthly water quality sampling data for the period 2004-2013 was considered for structuring the input-output pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the predictors and predictand. The prediction performances of HRSM were compared with that of support vector regression (SVR) model which is one of the most predominate applied machine learning approaches of the state-of-the-art for water quality prediction. The results indicated a very optimistic modeling accuracy of the proposed HRSM model to predict BOD and DO. Furthermore, the results showed a robust alternative mathematical model for determining water quality particularly in a data scarce region like Iraq.
  6. Zheyuan C, Rahman MA, Tao H, Liu Y, Pengxuan D, Yaseen ZM
    Work, 2021;68(3):825-834.
    PMID: 33612525 DOI: 10.3233/WOR-203416
    BACKGROUND: The increasing use of robotics in the work of co-workers poses some new problems in terms of occupational safety and health. In the workplace, industrial robots are being used increasingly. During operations such as repairs, unmanageable, adjustment, and set-up, robots can cause serious and fatal injuries to workers. Collaborative robotics recently plays a rising role in the manufacturing filed, warehouses, mining agriculture, and much more in modern industrial environments. This development advances with many benefits, like higher efficiency, increased productivity, and new challenges like new hazards and risks from the elimination of human and robotic barriers.

    OBJECTIVES: In this paper, the Advanced Human-Robot Collaboration Model (AHRCM) approach is to enhance the risk assessment and to make the workplace involving security robots. The robots use perception cameras and generate scene diagrams for semantic depictions of their environment. Furthermore, Artificial Intelligence (AI) and Information and Communication Technology (ICT) have utilized to develop a highly protected security robot based risk management system in the workplace.

    RESULTS: The experimental results show that the proposed AHRCM method achieves high performance in human-robot mutual adaption and reduce the risk.

    CONCLUSION: Through an experiment in the field of human subjects, demonstrated that policies based on the proposed model improved the efficiency of the human-robot team significantly compared with policies assuming complete human-robot adaptation.

  7. Guangnan Z, Tao H, Rahman MA, Yao L, Al-Saffar A, Meng Q, et al.
    Work, 2021;68(3):871-879.
    PMID: 33612530 DOI: 10.3233/WOR-203421
    BACKGROUND: An isolated robot must take account of uncertainty in its world model and adapt its activities to take into account such as uncertainty. In the same way, a robot interaction with security and privacy issues (RISAPI) with people has to account for its confusion about the human internal state, as well as how this state will shift as humans respond to the robot.

    OBJECTIVES: This paper discusses RISAPI of our original work in the field, which shows how probabilistic planning and system theory algorithms in workplace robotic systems that work with people can allow for that reasoning using a security robot system. The problem is a general way as an incomplete knowledge 2-player game.

    RESULTS: In this general framework, the various hypotheses and these contribute to thrilling and complex robot behavior through real-time interaction, which transforms actual human subjects into a spectrum of production systems, robots, and care facilities.

    CONCLUSION: The models of the internal human situation, in which robots can be designed efficiently, are limited, and achieve optimal computational intractability in large, high-dimensional spaces. To achieve this, versatile, lightweight portrayals of the human inner state and modern algorithms offer great hope for reasoning.

  8. Bhagat SK, Tiyasha T, Awadh SM, Tung TM, Jawad AH, Yaseen ZM
    Environ Pollut, 2021 Jan 01;268(Pt B):115663.
    PMID: 33120144 DOI: 10.1016/j.envpol.2020.115663
    Hybrid artificial intelligence (AI) models are developed for sediment lead (Pb) prediction in two Bays (i.e., Bramble (BB) and Deception (DB)) stations, Australia. A feature selection (FS) algorithm called extreme gradient boosting (XGBoost) is proposed to abstract the correlated input parameters for the Pb prediction and validated against principal component of analysis (PCA), recursive feature elimination (RFE), and the genetic algorithm (GA). XGBoost model is applied using a grid search strategy (Grid-XGBoost) for predicting Pb and validated against the commonly used AI models, artificial neural network (ANN) and support vector machine (SVM). The input parameter selection approaches redimensioned the 21 parameters into 9-5 parameters without losing their learned information over the models' training phase. At the BB station, the mean absolute percentage error (MAPE) values (0.06, 0.32, 0.34, and 0.33) were achieved for the XGBoost-SVM, XGBoost-ANN, XGBoost-Grid-XGBoost, and Grid-XGBoost models, respectively. At the DB station, the lowest MAPE values, 0.25 and 0.24, were attained for the XGBoost-Grid-XGBoost and Grid-XGBoost models, respectively. Overall, the proposed hybrid AI models provided a reliable and robust computer aid technology for sediment Pb prediction that contribute to the best knowledge of environmental pollution monitoring and assessment.
  9. Wan Mohtar WHM, Abdul Maulud KN, Muhammad NS, Sharil S, Yaseen ZM
    Environ Pollut, 2019 May;248:133-144.
    PMID: 30784832 DOI: 10.1016/j.envpol.2019.02.011
    Malaysia depends heavily on rivers as a source for water supply, irrigation, and sustaining the livelihood of local communities. The evolution of land use in urban areas due to rapid development and the continuous problem of illegal discharge have had a serious adverse impact on the health of the country's waterways. Klang River requires extensive rehabilitation and remediation before its water could be utilised for a variety of purposes. A reliable and rigorous remediation work plan is needed to identify the sources and locations of streams that are constantly polluted. This study attempts to investigate the feasibility of utilising a temporal and spatial risk quotient (RQ) based analysis to make an accurate assessment of the current condition of the tributaries in the Klang River catchment area. The study relies on existing data sets on Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), Total Suspended Solids (TSS), and Ammonia (NH3) to evaluate the water quality at thirty strategic locations. Analysis of ammonia pollution is not only based on the limit established for river health but was expanded to include the feasibility of using the water for water intake, recreational activities, and sustaining fish population. The temporal health of Klang River was evaluated using the Risk Matrix Approach (RMA) based on the frequency of RQ > 1 and associated colour-coded hazard impacts. By using the developed RMA, the hazard level for each parameter at each location was assessed and individually mapped using Geographic Information System (GIS). The developed risk hazard mapping has high potential as one of the essential tools in making decisions for a cost-effective river restoration and rehabilitation.
  10. Bobaker AM, Alakili I, Sarmani SB, Al-Ansari N, Yaseen ZM
    PMID: 31159472 DOI: 10.3390/ijerph16111957
    Henna and walnut tree bark are widely used by Libyan women as cosmetics. They may contain lead (Pb), cadmium (Cd) and arsenic (As), which, in turn, pose a high risk to their health. This study aims to determine the levels of Pb, Cd and As in henna and walnut tree bark products sold in Libyan markets. The products were analyzed for their Pb, Cd and As content by using inductively coupled plasma mass spectrometry (ICP-MS) after a microwave acid digestion. The results showed a significant difference between the henna and walnut tree bark samples in terms of their heavy metals content (p < 0.05). The highest heavy metal concentrations were observed in the walnut tree bark samples whereas the lowest was observed in the henna samples. In addition, 60% of the henna and 90% of the walnut tree bark samples contained Pb levels and approximately 80% of the henna and 90% the walnut tree bark samples contained Cd levels, which are much higher than the tolerance limit. However, As concentrations in all the samples were lower. The results indicated that such cosmetics expose consumers to high levels of Pb and Cd and hence, to potential health risks. Thus, studying the sources and effects of heavy metals in such cosmetics is strongly recommended.
  11. Tiyasha T, Tung TM, Bhagat SK, Tan ML, Jawad AH, Mohtar WHMW, et al.
    Mar Pollut Bull, 2021 Sep;170:112639.
    PMID: 34273614 DOI: 10.1016/j.marpolbul.2021.112639
    Dissolved oxygen (DO) is an important indicator of river health for environmental engineers and ecological scientists to understand the state of river health. This study aims to evaluate the reliability of four feature selector algorithms i.e., Boruta, genetic algorithm (GA), multivariate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost) to select the best suited predictor of the applied water quality (WQ) parameters; and compare four tree-based predictive models, namely, random forest (RF), conditional random forests (cForest), RANdom forest GEneRator (Ranger), and XGBoost to predict the changes of dissolved oxygen (DO) in the Klang River, Malaysia. The total features including 15 WQ parameters from monitoring site data and 7 hydrological components from remote sensing data. All predictive models performed well as per the features selected by the algorithms XGBoost and MARS in terms applied statistical evaluators. Besides, the best performance noted in case of XGBoost predictive model among all applied predictive models when the feature selected by MARS and XGBoost algorithms, with the coefficient of determination (R2) values of 0.84 and 0.85, respectively, nonetheless the marginal performance came up by Boruta-XGBoost model on in this scenario.
  12. Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, et al.
    Chemosphere, 2021 Aug;276:130162.
    PMID: 34088083 DOI: 10.1016/j.chemosphere.2021.130162
    Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.
  13. Shiri N, Shiri J, Yaseen ZM, Kim S, Chung IM, Nourani V, et al.
    PLoS One, 2021;16(5):e0251510.
    PMID: 34043648 DOI: 10.1371/journal.pone.0251510
    Groundwater is one of the most important freshwater resources, especially in arid and semi-arid regions where the annual amounts of precipitation are small with frequent drought durations. Information on qualitative parameters of these valuable resources is very crucial as it might affect its applicability from agricultural, drinking, and industrial aspects. Although geo-statistics methods can provide insight about spatial distribution of quality factors, applications of advanced artificial intelligence (AI) models can contribute to produce more accurate results as robust alternative for such a complex geo-science problem. The present research investigates the capacity of several types of AI models for modeling four key water quality variables namely electrical conductivity (EC), sodium adsorption ratio (SAR), total dissolved solid (TDS) and Sulfate (SO4) using dataset obtained from 90 wells in Tabriz Plain, Iran; assessed by k-fold testing. Two different modeling scenarios were established to make simulations using other quality parameters and the geographical information. The obtained results confirmed the capabilities of the AI models for modeling the well groundwater quality variables. Among all the applied AI models, the developed hybrid support vector machine-firefly algorithm (SVM-FFA) model achieved the best predictability performance for both investigated scenarios. The introduced computer aid methodology provided a reliable technology for groundwater monitoring and assessment.
  14. Jamei M, Ahmadianfar I, Karbasi M, Jawad AH, Farooque AA, Yaseen ZM
    J Environ Manage, 2021 Dec 15;300:113774.
    PMID: 34560461 DOI: 10.1016/j.jenvman.2021.113774
    The concentration of soluble salts in surface water and rivers such as sodium, sulfate, chloride, magnesium ions, etc., plays an important role in the water salinity. Therefore, accurate determination of the distribution pattern of these ions can improve better management of drinking water resources and human health. The main goal of this research is to establish two novel wavelet-complementary intelligence paradigms so-called wavelet least square support vector machine coupled with improved simulated annealing (W-LSSVM-ISA) and the wavelet extended Kalman filter integrated with artificial neural network (W-EKF- ANN) for accurate forecasting of the monthly), magnesium (Mg+2), and sulfate (SO4-2) indices at Maroon River, in Southwest of Iran. The monthly River flow (Q), electrical conductivity (EC), Mg+2, and SO4-2 data recorded at Tange-Takab station for the period 1980-2016. Some preprocessing procedures consisting of specifying the number of lag times and decomposition of the existing original signals into multi-resolution sub-series using three mother wavelets were performed to develop predictive models. In addition, the best subset regression analysis was designed to separately assess the best selective combinations for Mg+2 and SO4-2. The statistical metrics and authoritative validation approaches showed that both complementary paradigms yielded promising accuracy compared with standalone artificial intelligence (AI) models. Furthermore, the results demonstrated that W-LSSVM-ISA-C1 (correlation coefficient (R) = 0.9521, root mean square error (RMSE) = 0.2637 mg/l, and Kling-Gupta efficiency (KGE) = 0.9361) and W-LSSVM-ISA-C4 (R = 0.9673, RMSE = 0.5534 mg/l and KGE = 0.9437), using Dmey mother that outperformed the W-EKF-ANN for predicting Mg+2 and SO4-2, respectively.
  15. Fu M, Le C, Fan T, Prakapovich R, Manko D, Dmytrenko O, et al.
    Environ Sci Pollut Res Int, 2021 Dec;28(45):64818-64829.
    PMID: 34318419 DOI: 10.1007/s11356-021-15574-y
    The atmospheric particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) is one of the key indicators of air pollutants. Accurate prediction of PM2.5 concentration is very important for air pollution monitoring and public health management. However, the presence of noise in PM2.5 data series is a major challenge of its accurate prediction. A novel hybrid PM2.5 concentration prediction model is proposed in this study by combining complete ensemble empirical mode decomposition (CEEMD) method, Pearson's correlation analysis, and a deep long short-term memory (LSTM) method. CEEMD was employed to decompose historical PM2.5 concentration data to different frequencies in order to enhance the timing characteristics of data. Pearson's correlation was used to screen the different frequency intrinsic-mode functions of decomposed data. Finally, the filtered enhancement data were inputted to a deep LSTM network with multiple hidden layers for training and prediction. The results evidenced the potential of the CEEMD-LSTM hybrid model with a prediction accuracy of approximately 80% and model convergence after 700 training epochs. The secondary screening of Pearson's correlation test improved the model (CEEMD-Pearson) accuracy up to 87% but model convergence after 800 epochs. The hybrid model combining CEEMD-Pearson with the deep LSTM neural network showed a prediction accuracy of nearly 90% and model convergence after 650 interactions. The results provide a clear indication of higher prediction accuracy of PM2.5 with less computation time through hybridization of CEEMD-Pearson with deep LSTM models and its potential to be employed for air pollution monitoring.
  16. Hashim BM, Al-Naseri SK, Al Maliki A, Sa'adi Z, Malik A, Yaseen ZM
    Environ Sci Pollut Res Int, 2021 Sep;28(36):50344-50362.
    PMID: 33956319 DOI: 10.1007/s11356-021-13812-x
    At the end of 2019, a novel coronavirus COVID-19 emerged in Wuhan, China, and later spread throughout the world, including Iraq. To control the rapid dispersion of the virus, Iraq, like other countries, has imposed national lockdown measures, such as social distancing, restriction of automobile traffic, and industrial enterprises. This has led to reduced human activities and air pollutant emissions, which caused improvement in air quality. This study focused on the analysis of the impact of the six partial, total, and post-lockdown periods (1st partial lockdown from March 1 to16, 2020, 1st total lockdown from March 17 to April 21, 2nd partial lockdown from April 22 to May 23, 2nd total lockdown from May 24 to June 13, 3rd partial lockdown from June 14 to August 19, and end partial lockdown from August 20 to 31) on the average of daily NO2, O3, PM2.5, and PM10 concentrations, as well as air quality index (AQI) in 18 Iraqi provinces during these periods (from March 1st to August 31st, 2020). The analysis showed a decline in the average of daily PM2.5, PM10, and NO2 concentrations by 24%, 15%, and 8%, respectively from March 17 to April 21, 2020 (first phase of total lockdown) in comparison to the 1st phase of partial lockdown (March 1 to March 16, 2020). Furthermore, the O3 increased by 10% over the same period. The 2nd phase of total lockdown, the 3rd partial lockdown, and the post-lockdown periods witnessed declines in PM2.5 by 8%, 11%, and 21%, respectively, while the PM10 increases over the same period. Iraqi also witnessed improvement in the AQI by 8% during the 1st phase of total lockdown compared to the 1st phase of partial lockdown. The level of air pollutants in Iraq declined significantly during the six lockdown periods as a result of reduced human activities. This study gives confidence that when strict measures are implemented, air quality can improve.
  17. Bhagat SK, Tiyasha T, Kumar A, Malik T, Jawad AH, Khedher KM, et al.
    J Environ Manage, 2022 Feb 16;309:114711.
    PMID: 35182982 DOI: 10.1016/j.jenvman.2022.114711
    Heavy metals (HMs) such as Lead (Pb) have played a vital role in increasing the sediments of the Australian bay's ecosystem. Several meteorological parameters (i.e., minimum, maximum and average temperature (Tmin, Tmax and TavgoC), rainfall (Rn mm) and their interactions with the other batch HMs, are hypothesized to have high impact for the decision-making strategies to minimize the impacts of Pb. Three feature selection (FS) algorithms namely the Boruta method, genetic algorithm (GA) and extreme gradient boosting (XGBoost) were investigated to select the highly important predictors for Pb concentration in the coastal bay sediments of Australia. These FS algorithms were statistically evaluated using principal component analysis (PCA) Biplot along with the correlation metrics describing the statistical characteristics that exist in the input and output parameter space of the models. To ensure a high accuracy attained by the applied predictive artificial intelligence (AI) models i.e., XGBoost, support vector machine (SVM) and random forest (RF), an auto-hyper-parameter tuning process using a Grid-search approach was also implemented. Cu, Ni, Ce, and Fe were selected by all the three applied FS algorithms whereas the Tavg and Rn inputs remained the essential parameters identified by GA and Boruta. The order of the FS outcome was XGBoost > GA > Boruta based on the applied statistical examination and the PCA Biplot results and the order of applied AI predictive models was XGBoost-SVM > GA-SVM > Boruta-SVM, where the SVM model remained at the top performance among the other statistical metrics. Based on the Taylor diagram for model evaluation, the RF model was reflected only marginally different so overall, the proposed integrative AI model provided an evidence a robust and reliable predictive technique used for coastal sediment Pb prediction.
  18. Al Zand AW, Ali MM, Al-Ameri R, Badaruzzaman WHW, Tawfeeq WM, Hosseinpour E, et al.
    Materials (Basel), 2021 Oct 23;14(21).
    PMID: 34771860 DOI: 10.3390/ma14216334
    The flexural strength of Slender steel tube sections is known to achieve significant improvements upon being filled with concrete material; however, this section is more likely to fail due to buckling under compression stresses. This study investigates the flexural behavior of a Slender steel tube beam that was produced by connecting two pieces of C-sections and was filled with recycled-aggregate concrete materials (CFST beam). The C-section's lips behaved as internal stiffeners for the CFST beam's cross-section. A static flexural test was conducted on five large scale specimens, including one specimen that was tested without concrete material (hollow specimen). The ABAQUS software was also employed for the simulation and non-linear analysis of an additional 20 CFST models in order to further investigate the effects of varied parameters that were not tested experimentally. The numerical model was able to adequately verify the flexural behavior and failure mode of the corresponding tested specimen, with an overestimation of the flexural strength capacity of about 3.1%. Generally, the study confirmed the validity of using the tubular C-sections in the CFST beam concept, and their lips (internal stiffeners) led to significant improvements in the flexural strength, stiffness, and energy absorption index. Moreover, a new analytical method was developed to specifically predict the bending (flexural) strength capacity of the internally stiffened CFST beams with steel stiffeners, which was well-aligned with the results derived from the current investigation and with those obtained by others.
  19. Afan HA, Allawi MF, El-Shafie A, Yaseen ZM, Ahmed AN, Malek MA, et al.
    Sci Rep, 2020 03 13;10(1):4684.
    PMID: 32170078 DOI: 10.1038/s41598-020-61355-x
    In nature, streamflow pattern is characterized with high non-linearity and non-stationarity. Developing an accurate forecasting model for a streamflow is highly essential for several applications in the field of water resources engineering. One of the main contributors for the modeling reliability is the optimization of the input variables to achieve an accurate forecasting model. The main step of modeling is the selection of the proper input combinations. Hence, developing an algorithm that can determine the optimal input combinations is crucial. This study introduces the Genetic algorithm (GA) for better input combination selection. Radial basis function neural network (RBFNN) is used for monthly streamflow time series forecasting due to its simplicity and effectiveness of integration with the selection algorithm. In this paper, the RBFNN was integrated with the Genetic algorithm (GA) for streamflow forecasting. The RBFNN-GA was applied to forecast streamflow at the High Aswan Dam on the Nile River. The results showed that the proposed model provided high accuracy. The GA algorithm can successfully determine effective input parameters in streamflow time series forecasting.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links