Displaying publications 1 - 20 of 180 in total

Abstract:
Sort:
  1. Chong ZX, Yeap SK, Ho WY
    Arch Biochem Biophys, 2020 11 30;695:108583.
    PMID: 32956633 DOI: 10.1016/j.abb.2020.108583
    miRNAs are short non-coding RNA molecules that regulate the expression of mRNA post-transcriptionally. MiRNAs that are secreted into the circulation, also termed circulating miRNAs, have been studied extensively for their roles in diagnosis, treatment and prognosis of human breast cancer. Breast cancer is the most prevalent female cancer and is associated with key cancer hallmarks including sustained proliferation, evasion of apoptosis, increased invasion, enhanced metastases, initation of inflammation, induction of angiogenesis, metabolic derangement and immune dysregulation. This review aimed to explore the relationships between circulating miRNAs and different breast cancer hallmarks. Besides, the advantages, challenges and clinical application of using circulating miRNAs in human breast cancer management were also discussed.
  2. Chong ZX, Yeap SK, Ho WY
    Int J Radiat Biol, 2021;97(3):289-301.
    PMID: 33356761 DOI: 10.1080/09553002.2021.1864048
    Breast cancer is the most common type of cancer that affects females globally. Radiotherapy is a standard treatment option for breast cancer, where one of its most significant limitations is radioresistance development. MicroRNAs (miRNAs) are small, non-protein-coding RNAs that have been widely studied for their roles as disease biomarkers. To date, several in vitro, in vivo, and clinical studies have reported the roles of miRNAs in regulating radiosensitivity and radioresistance in breast cancer cells. This article reviews the roles of miRNAs in regulating treatment response toward radiotherapy and the associating cellular pathways. We identified 36 miRNAs that play a role in mediating radio-responses; 22 were radiosensitizing, 12 were radioresistance-promoting, and two miRNAs were reported to promote both effects. A brief overview of breast cancer therapy options, mechanism of action of radiation, and molecular mechanism of radioresistance was provided in this article. A summary of the latest clinical researches involving miRNAs in breast cancer radiotherapy was also included.
  3. Chong ZX, Yeap SK, Ho WY
    PeerJ, 2021;9:e11165.
    PMID: 33976969 DOI: 10.7717/peerj.11165
    Transfection is a modern and powerful method used to insert foreign nucleic acids into eukaryotic cells. The ability to modify host cells' genetic content enables the broad application of this process in studying normal cellular processes, disease molecular mechanism and gene therapeutic effect. In this review, we summarized and compared the findings from various reported literature on the characteristics, strengths, and limitations of various transfection methods, type of transfected nucleic acids, transfection controls and approaches to assess transfection efficiency. With the vast choices of approaches available, we hope that this review will help researchers, especially those new to the field, in their decision making over the transfection protocol or strategy appropriate for their experimental aims.
  4. Chong ZX, Yeap SK, Ho WY
    J Biomed Sci, 2021 Mar 25;28(1):21.
    PMID: 33761957 DOI: 10.1186/s12929-021-00715-9
    Breast cancer is the most common solid cancer that affects female population globally. MicroRNAs (miRNAs) are short non-coding RNAs that can regulate post-transcriptional modification of multiple downstream genes. Autophagy is a conserved cellular catabolic activity that aims to provide nutrients and degrade un-usable macromolecules in mammalian cells. A number of in vitro, in vivo and clinical studies have reported that some miRNAs could modulate autophagy activity in human breast cancer cells, and these would influence human breast cancer progression and treatment response. Therefore, this review was aimed to discuss the roles of autophagy-regulating miRNAs in influencing breast cancer development and treatment response. The review would first introduce autophagy types and process, followed by the discussion of the roles of different miRNAs in modulating autophagy in human breast cancer, and to explore how would this miRNA-autophagy regulatory process affect the disease progression or treatment response. Lastly, the potential applications and challenges of utilizing autophagy-regulating miRNAs as breast cancer biomarkers and novel therapeutic agents would be discussed.
  5. Chong ZX, Yeap SK, Ho WY
    Pathol Res Pract, 2021 Mar;219:153326.
    PMID: 33601152 DOI: 10.1016/j.prp.2020.153326
    MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
  6. Chong ZX, Yeap SK, Ho WY
    Pharmacol Res, 2021 10;172:105818.
    PMID: 34400316 DOI: 10.1016/j.phrs.2021.105818
    Osteosarcoma is one of the most prevalent primary bone tumors with a high metastatic and recurrence rate with poor prognosis. MiRNAs are short and non-coding RNAs that could regulate various cellular activities and one of them is the epithelial-to-mesenchymal transition (EMT). Osteosarcoma cells that have undergone EMT would lose their cellular polarity and acquire invasive and metastatic characteristics. Our literature search showed that many pre-clinical and clinical studies have reported the roles of miRNAs in modulating the EMT process in osteosarcoma and compared to other cancers like breast cancer, there is a lack of review article which effectively summarizes the various roles of EMT-regulating miRNAs in osteosarcoma. This review, therefore, was aimed to discuss and summarize the EMT-promoting and EMT-suppressing roles of different miRNAs in osteosarcoma. The review would begin with the discussion on the concepts and principles of EMT, followed by the exploration of the diverse roles of EMT-regulating miRNAs in osteosarcoma. Subsequently, the potential use of miRNAs as prognostic biomarkers in osteosarcoma to predict the likelihood of metastases and as therapeutic agents would be discussed.
  7. Chong ZX, Yeap SK, Ho WY
    Pathol Res Pract, 2021 Apr;220:153351.
    PMID: 33642053 DOI: 10.1016/j.prp.2021.153351
    MicroRNA (miRNA) is a form of short, single-stranded and non-coding RNA that is important in regulating the post-transcriptional modification of multiple downstream targets. Many miRNAs have been reported to involve in controlling the progression of human diseases, and one of them is miR-638, which play essential roles in regulating the development of human cancer. By targeting the 3'-ends of its targets, miR-638 can regulate cellular processes including proliferation, invasion, metastases, angiogenesis, apoptosis and inflammation. This review was aimed to summarize current findings on the roles of miR-638 in different human cancers based on the results from various in vitro, in vivo and clinical studies. The biogenesis process and tissue expression, followed by the roles of miR-638 in regulating the development of various human cancers by targeting different downstream targets were covered in this review. The potential applications and challenges of employing miR-638 as cancer biomarker and therapeutic agent were also discussed.
  8. Chong ZX, Ho WY, Yeap SK
    Biochem Pharmacol, 2023 Apr;210:115466.
    PMID: 36849065 DOI: 10.1016/j.bcp.2023.115466
    Eyes absent homolog 4 (EYA4) is a protein that regulates many vital cellular processes and organogenesis pathways. It possesses phosphatase, hydrolase, and transcriptional activation functions. Mutations in the Eya4 gene can cause sensorineural hearing loss and heart disease. In most non-nervous system cancers such as those of the gastrointestinal tract (GIT), hematological and respiratory systems, EYA4 acts as a putative tumor suppressor. However, in nervous system tumors such as glioma, astrocytoma, and malignant peripheral nerve sheath tumor (MPNST), it plays a putative tumor-promoting role. EYA4 interacts with various signaling proteins of the PI3K/AKT, JNK/cJUN, Wnt/GSK-3β, and cell cycle pathways to exert its tumor-promoting or tumor-suppressing effect. The tissue expression level and methylation profiles of Eya4 can help predict the prognosis and anti-cancer treatment response among cancer patients. Targeting and altering Eya4 expression and activity could be a potential therapeutic strategy to suppress carcinogenesis. In conclusion, EYA4 may have both putative tumor-promoting and tumor-suppressing roles in different human cancers and has the potential to serve as a prognostic biomarker and therapeutic agent in various cancer types.
  9. Chong ZX, Ho WY, Yeap SK
    Life Sci, 2024 Apr 03.
    PMID: 38580197 DOI: 10.1016/j.lfs.2024.122609
    LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-β pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.
  10. Chong ZX, Ho WY, Yeap SK
    Prog Biophys Mol Biol, 2024 Apr 07.
    PMID: 38593905 DOI: 10.1016/j.pbiomolbio.2024.04.003
    Dysregulation of long non-coding RNA (lncRNA) HOXA-AS3 has been shown to contribute to the development of multiple cancer types. Several studies have presented the tumour-modulatory role or prognostic significance of this lncRNA in various kinds of cancer. Overall, HOXA-AS3 can act as a competing endogenous RNA (ceRNA) that inhibits the activity of seven microRNAs (miRNAs), including miR-29a-3p, miR-29 b-3p, miR-29c, miR-218-5p, miR-455-5p, miR-1286, and miR-4319. This relieves the downstream messenger RNA (mRNA) targets of these miRNAs from miRNA-mediated translational repression, allowing them to exert their effect in regulating cellular activities. Examples of the pathways regulated by lncRNA HOXA-AS3 and its associated downstream targets include the WNT/β-catenin and epithelial-to-mesenchymal transition (EMT) activities. Besides, HOXA-AS3 can interact with other cellular proteins like homeobox HOXA3 and HOXA6, influencing the oncogenic signaling pathways associated with these proteins. Generally, HOXA-AS3 is overexpressed in most of the discussed human cancers, making this lncRNA a potential candidate to diagnose cancer or predict the clinical outcomes of cancer patients. Hence, targeting HOXA-AS3 could be a new therapeutic approach to slowing cancer progression or as a potential biomarker and therapeutic target. A drawback of using lncRNA HOXA-AS3 as a biomarker or therapeutic target is that most of the studies that have reported the tumour-regulatory roles of lncRNA HOXA-AS3 are single observational, in vitro, or in vivo studies. More in-depth mechanistic and large-scale clinical trials must be conducted to confirm the tumour-modulatory roles of lncRNA HOXA-AS3 further. Besides, no lncRNA HOXA-AS3 inhibitor has been tested preclinically and clinically, and designing such an inhibitor is crucial as it may potentially slow cancer progression.
  11. Tan BL, Norhaizan ME, Yeap SK, Roselina K
    Eur Rev Med Pharmacol Sci, 2015;19(6):1022-9.
    PMID: 25855928
    Brewers' rice, a mixture of broken rice, rice bran, and rice germ, is a rice by-product in the rice industry. The present study was designed to investigate the in vitro cytotoxicity of the water extract of brewers' rice (WBR) against colorectal cancer (HT-29) cells.
  12. Nigjeh SE, Yeap SK, Nordin N, Rahman H, Rosli R
    Molecules, 2019 Sep 05;24(18).
    PMID: 31492037 DOI: 10.3390/molecules24183241
    Breast cancer is the most commonly diagnosed cancer and the leading cause of cancer death among females globally. The tumorigenic activities of cancer cells such as aldehyde dehydrogenase (ALDH) activity and differentiation have contributed to relapse and eventual mortality in breast cancer. Thus, current drug discovery research is focused on targeting breast cancer cells with ALDH activity and their capacity to form secondary tumors. Citral (3,7-dimethyl-2,6-octadienal), from lemon grass (Cymbopogoncitrates), has been previously reported to have a cytotoxic effect on breast cancer cells. Hence, this study was conducted to evaluate the in vivo effect of citral in targeting ALDH activity of breast cancer cells. BALB/c mice were challenged with 4T1 breast cancer cells followed by daily oral feeding of 50 mg/kg citral or distilled water for two weeks. The population of ALDH+ tumor cells and their capacity to form secondary tumors in both untreated and citral treated 4T1 challenged mice were assessed by Aldefluor assay and tumor growth upon cell reimplantation in normal mice, respectively. Citral treatment reduced the size and number of cells with ALDH+ activity of the tumors in 4T1-challenged BALB/c mice. Moreover, citral-treated mice were also observed with smaller tumor size and delayed tumorigenicity after reimplantation of the primary tumor cells into normal mice. These findings support the antitumor effect of citral in targeting ALDH+ cells and tumor recurrence in breast cancer cells.
  13. Subramani T, Rathnavelu V, Yeap SK, Alitheen NB
    Mediators Inflamm, 2013;2013:275172.
    PMID: 23431239 DOI: 10.1155/2013/275172
    Mast cells (MCs) are multifunctional effector cells that were originally thought to be involved in allergic disorders. Now it is known that they contain an array of mediators with a multitude of effects on many other cells. MCs have become a recent concern in drug-induced gingival overgrowth (DIGO), an unwanted outcome of systemic medication. Most of the studies have confirmed the significant presence of inflammation as a prerequisite for the overgrowth to occur. The inflammatory changes within the gingival tissue appear to influence the interaction between the inducing drug and the fibroblast activity. The development of antibodies to MC-specific enzymes, tryptase and chymase, has facilitated the study of mast cells in DIGO. Many immunohistochemical studies involving MCs have been conducted; as a result, DIGO tissues are found to have increased the number of MCs in the gingiva, especially in the area of fibrosis. At the cellular level, gingival fibrogenesis is initiated by several mediators which induce the recruitment of a large number of inflammatory cells, including MCs. The purpose of this paper is to access the roles played by MCs in gingival overgrowth to hypothesize a relationship between these highly specialized cells in the pathogenesis of DIGO.
  14. Yasmin AR, Yeap SK, Hair-Bejo M, Omar AR
    Avian Dis, 2016 12;60(4):739-751.
    PMID: 27902915
    Studies have shown that infectious bursal disease virus (IBDV) infects lymphoid cells, mainly B cells and macrophages. This study was aimed to examine the involvement of chicken splenic-derived dendritic cells (ch-sDCs) in specific-pathogen-free chickens following inoculation with IBDV vaccine strain (D78) and a very virulent (vv) strain (UPM0081). Following IBDV infection, enriched activated ch-sDCs were collected by using the negative selection method and were examined based on morphology and immunophenotyping to confirm the isolation method for dendritic cells (DCs). The presence of IBDV on enriched activated ch-sDCs was analyzed based on the immunofluorescence antibody test (IFAT), flow cytometry, and quantitative real-time PCR (RT-qPCR) while the mRNAs of several cytokines were detected using RT-qPCR. The isolated ch-sDCs resembled typical DC morphologies found in mammals by having a veiled shape and they grew in clusters. Meanwhile, the expression of DC maturation markers, namely CD86 and MHCII, were increased at day 2 and day 3 following vvIBDV and vaccine strain inoculation, respectively, ranging from 10% to 40% compared to the control at 2.55% (P < 0.05). At day 3 postinfection, IBDV VP3 proteins colocalized with CD86 were readily detected via IFAT and flow cytometry in both vaccine and vvIBDV strains. In addition, enriched activated ch-sDCs were also detected as positive based on the VP4 gene by RT-qPCR; however, a higher viral load was detected on vvIBDV compared to the vaccine group. Infection with vaccine and vvIBDV strains induced the enriched activated ch-sDCs to produce proinflammatory cytokines and Th1-like cytokines from day 3 onward; however, the expressions were higher in the vvIBDV group (P < 0.05). These data collectively suggest that enriched activated ch-sDCs were permissive to IBDV infection and produced a strong inflammatory and Th1-like cytokine response following vvIBDV infection as compared to the vaccine strain.
  15. Mohamad NE, Abu N, Yeap SK, Alitheen NB
    Integr Cancer Ther, 2019 11 23;18:1534735419880258.
    PMID: 31752555 DOI: 10.1177/1534735419880258
    Background: This study aimed to evaluate the antitumor enhancing effect of bromelain consumption on 4T1-challenged mice treated with cisplatin. Methods: Mice challenged with 4T1 triple-negative breast cancer cells received water, bromelain, cisplatin, or bromelain + cisplatin treatment for 28 days. Tumor size was measured, and lung metastasis was evaluated by clonogenic assay. Expression of tumor inflammatory genes of the harvested tumor was quantified by polymerase chain reaction array and ELISA (enzyme-linked immunosorbent assay). Results: All treatments significantly reduced the size of tumor and lung metastasis, with combination treatment showing the best effect. Also, bromelain alone and combination treatment showed downregulation of the expression of tumor inflammatory genes (Gremlin [GREM1], interleukin 1β [IL-1β], interleukin-4 [IL-4], nuclear factor κB subunit 1 [NFκB1], and prostaglandin-endoperoxide synthase 2 [PTGS2]), tumor nitric oxide level, and serum IL-1β, and IL-4 levels. On the other hand, cisplatin treatment increased the expression of selected inflammatory markers. Conclusion: This study suggests that bromelain treatment could potentiate the antitumor effect of cisplatin on triple-negative breast cancer 4T1 cells through modulating the tumor environmental inflammation.
  16. Chong ZX, Yeap SK, Ho WY, Fang CM
    Pathol Res Pract, 2022 Feb;230:153745.
    PMID: 34953353 DOI: 10.1016/j.prp.2021.153745
    The rapid development of small RNA and molecular biology research in the past 20 years has enabled scientists to discover many new miRNAs that are proven to play essential roles in regulating the development of different cancer types. Among these miRNAs, miR-1275 is one of the well-studied miRNAs that has been described to act as a tumour-promoting or tumour-suppressing miRNA in various cancer types. Even though miR-1275 has been widely reported in different original research articles on its roles in modulating the progression of different cancer types, however, there is scarce an in-depth review that could constructively summarize the findings from different studies on the regulatory roles of miR-1275 in different cancer types. To fill up this literature gap, therefore, this review was aimed to provide an overview and summary of the roles of miR-1275 in modulating the development of different cancers and to unravel the mechanism of how miR-1275 regulates cancer progression. Based on the findings summarized from various sources, it was found that miR-1275 plays a vital role in regulating various cellular signaling pathways like the PI3K/AKT, ERK/JNK, MAPK, and Wnt signaling pathways, and the dysregulation of this miRNA has been shown to contribute to the development of multiple cancer types such as cancers of the liver, breast, lung, gastrointestinal tract and genitourinary tract. Therefore, miR-1275 has great potential to be employed as a biomarker to diagnose cancer and to predict the prognosis of cancer patients. In addition, by inhibiting the expression of its unique downstream targets that are involved in regulating the mentioned cellular pathways, this miRNA could also be utilized as a novel therapeutic agent to halt cancer development.
  17. Yong CY, Yeap SK, Omar AR, Tan WS
    PeerJ, 2017;5:e3841.
    PMID: 28970971 DOI: 10.7717/peerj.3841
    Nodaviruses are small bipartite RNA viruses which belong to the family of Nodaviridae. They are categorized into alpha-nodavirus, which infects insects, and beta-nodavirus, which infects fishes. Another distinct group of nodavirus infects shrimps and prawns, which has been proposed to be categorized as gamma-nodavirus. Our current review focuses mainly on recent studies performed on nodaviruses. Nodavirus can be transmitted vertically and horizontally. Recent outbreaks have been reported in China, Indonesia, Singapore and India, affecting the aquaculture industry. It also decreased mullet stock in the Caspian Sea. Histopathology and transmission electron microscopy (TEM) are used to examine the presence of nodaviruses in infected fishes and prawns. For classification, virus isolation followed by nucleotide sequencing are required. In contrast to partial sequence identification, profiling the whole transcriptome using next generation sequencing (NGS) offers a more comprehensive comparison and characterization of the virus. For rapid diagnosis of nodavirus, assays targeting the viral RNA based on reverse-transcription PCR (RT-PCR) such as microfluidic chips, reverse-transcription loop-mediated isothermal amplification (RT-LAMP) and RT-LAMP coupled with lateral flow dipstick (RT-LAMP-LFD) have been developed. Besides viral RNA detections, diagnosis based on immunological assays such as enzyme-linked immunosorbent assay (ELISA), immunodot and Western blotting have also been reported. In addition, immune responses of fish and prawn are also discussed. Overall, in fish, innate immunity, cellular type I interferon immunity and humoral immunity cooperatively prevent nodavirus infections, whereas prawns and shrimps adopt different immune mechanisms against nodavirus infections, through upregulation of superoxide anion, prophenoloxidase, superoxide dismutase (SOD), crustin, peroxinectin, anti-lipopolysaccharides and heat shock proteins (HSP). Potential vaccines for fishes and prawns based on inactivated viruses, recombinant proteins or DNA, either delivered through injection, oral feeding or immersion, are also discussed in detail. Lastly, a comprehensive review on nodavirus virus-like particles (VLPs) is presented. In recent years, studies on prawn nodavirus are mainly focused on Macrobrachium rosenbergii nodavirus (MrNV). Recombinant MrNV VLPs have been produced in prokaryotic and eukaryotic expression systems. Their roles as a nucleic acid delivery vehicle, a platform for vaccine development, a molecular tool for mechanism study and in solving the structures of MrNV are intensively discussed.
  18. Ho WY, Liew SS, Yeap SK, Alitheen NB
    PMID: 34712346 DOI: 10.1155/2021/6355236
    Elephantopus scaber Linn, a traditional herb, exhibited anticancer properties, and it was cytotoxic against the monolayer estrogen receptor-positive breast cancer cell line, MCF-7, in the previous study. In order to determine the potential of E. scaber as a complementary medicine for breast cancer, this study aimed to evaluate the synergism between E. scaber and tamoxifen in cytotoxicity using MCF-7 in the form of 3-dimensional multicellular tumor spheroid (MCTS) cultures. MCTS represents a more reliable model for studying drug penetration as compared to monolayer cells due to its greater resemblance to solid tumor. Combination of E. scaber ethanol extract and tamoxifen, which were used in concentrations lower than their respective IC50 values, had successfully induced apoptosis on MCTS in this study. The combinatorial treatment showed >58% increase of lactate dehydrogenase release in cell media, cell cycle arrest at the S phase, and 1.3 fold increase in depolarization of mitochondrial membrane potential. The treated MCTS also experienced DNA fragmentation; this had been quantified by TUNEL-positive assay, which showed >64% increase in DNA damaged cells. Higher externalization of phospatidylserine and distorted and disintegrated spheroids stained by acridine orange/propidium iodide showed that the cell death was mainly due to apoptosis. Further exploration showed that the combinatorial treatment elevated caspases-8 and 9 activities involving both extrinsic and intrinsic pathways of apoptosis. The treatment also upregulated the expression of proapoptotic gene HSP 105 and downregulated the expression of prosurvival genes such as c-Jun, ICAM1, and VEGF. In conclusion, these results suggested that the coupling of E. scaber to low concentration of tamoxifen showed synergism in cytotoxicity and reducing drug resistance in estrogen receptor-positive breast cancer.
  19. Liew SS, Ho WY, Yeap SK, Sharifudin SAB
    PeerJ, 2018;6:e5331.
    PMID: 30083463 DOI: 10.7717/peerj.5331
    BACKGROUND: Citrus sinensis peels are usually discarded as wastes; however, they are rich sources of Vitamin C, fibre, and many nutrients, including phenolics and flavonoids which are also good antioxidant agents. This study aimed to examine phytochemical composition and antioxidant capabilities of C. sinensis peel extracted conventionally with different methanol/water, ethanol/water, and acetone/water solvents.

    METHODS: C. sinensis peels were subjected to extraction with 100%, 70% and 50% of methanol, ethanol, and acetone, respectively, as well as hot water extraction. Antioxidant activities of the peel extracts were examined via the 2,2-diphenylpicrylhydrazyl (DPPH) free radical scavenging activity, ferric reducing antioxidant power (FRAP) assay, and oxygen radical absorbance capacity (ORAC) assay. Total phenolic content and total flavonoid content of the extracts were measured via the Folin-Ciocalteau method and the aluminium chloride colorimetric method, respectively. Phenolic acid and organic acid composition of the peel extracts were further determined via high performance liquid chromatography (HPLC) while flavonoid content was identified via ultra performance liquid chromatography (UPLC).

    RESULTS: DPPH radical scavenging activity of C. sinensis peel extracts varied from 8.35 to 18.20 mg TE/g, FRAP ranged from 95.00 to 296.61 mmol Fe(II)/g, while ORAC value ranged from 0.31 to 0.92 mol TE/g. Significant level of association between the assays was observed especially between TPC and FRAP (R-square = 0.95, P 

  20. Sue MJ, Yeap SK, Omar AR, Tan SW
    Biomed Res Int, 2014;2014:653014.
    PMID: 24971343 DOI: 10.1155/2014/653014
    Polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA) is an immunodetection method that can quantify PCR product directly after immobilization of biotinylated DNA on a microplate. This method, which detects nucleic acid instead of protein, is a much more sensitive method compared to conventional PCR method, with shorter analytical time and lower detection limit. Its high specificity and sensitivity, together with its semiquantitative ability, give it a huge potential to serve as a powerful detection tool in various industries such as medical, veterinary, and agricultural industries. With the recent advances in PCR-ELISA, it is envisaged that the assay is more widely recognized for its fast and sensitive detection limit which could improve overall diagnostic time and quality.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links