Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Yeo CC
    Mol Microbiol, 2018 05;108(4):331-335.
    PMID: 29624768 DOI: 10.1111/mmi.13958
    GCN5-related N-acetyltransferase (GNAT) is a huge superfamily of proteins spanning the prokaryotic and eukaryotic domains of life. GNAT proteins usually transfer an acetyl group from acetyl-CoA to a wide variety of substrates ranging from aminoglycoside antibiotics to large macromolecules. Type II toxin-antitoxin (TA) modules are typically bicistronic and widespread in bacterial and archael genomes with diverse cellular functions. Recently, a novel family of type II TA toxins was described, which presents a GNAT-fold and functions by acetylating charged tRNA thereby precluding translation. These GNAT toxins are usually associated with a corresponding ribbon-helix-helix-fold (RHH) antitoxin. In this issue, Qian et al. describes a unique GNAT-RHH TA system, designated KacAT, from a multidrug resistant strain of the pathogen, Klebsiella pneumoniae. As most type II TA loci, kacAT is transcriptionally autoregulated with the KacAT complex binding to the operator site via the N-terminus region of KacA to repress kacAT transcription. The crystal structure of the KacT toxin is also presented giving a structural basis for KacT toxicity. These findings expand our knowledge on this newly discovered family of TA toxins and the potential role that they may play in antibiotic tolerance and persistence of bacterial pathogens.
  2. Lean SS, Yeo CC
    Front Microbiol, 2017;8:1547.
    PMID: 28861061 DOI: 10.3389/fmicb.2017.01547
    Acinetobacter baumannii is a Gram-negative nosocomial pathogen that has become a serious healthcare concern within a span of two decades due to its ability to rapidly acquire resistance to all classes of antimicrobial compounds. One of the key features of the A. baumannii genome is an open pan genome with a plethora of plasmids, transposons, integrons, and genomic islands, all of which play important roles in the evolution and success of this clinical pathogen, particularly in the acquisition of multidrug resistance determinants. An interesting genetic feature seen in majority of A. baumannii genomes analyzed is the presence of small plasmids that usually ranged from 2 to 10 kb in size, some of which harbor antibiotic resistance genes and homologs of plasmid mobilization genes. These plasmids are often overlooked when compared to their larger, conjugative counterparts that harbor multiple antibiotic resistance genes and transposable elements. In this mini-review, we will examine our current knowledge of these small A. baumannii plasmids and look into their genetic diversity and phylogenetic relationships. Some of these plasmids, such as the Rep-3 superfamily group and the pRAY-type, which has no recognizable replicase genes, are quite widespread among diverse A. baumannii clinical isolates worldwide, hinting at their usefulness to the lifestyle of this pathogen. Other small plasmids especially those from the Rep-1 superfamily are truly enigmatic, encoding only hypothetical proteins of unknown function, leading to the question of whether these small plasmids are "good" or "bad" to their host A. baumannii.
  3. Chan WT, Espinosa M, Yeo CC
    Front Mol Biosci, 2016;3:9.
    PMID: 27047942 DOI: 10.3389/fmolb.2016.00009
    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall also look into some interesting deviations from the canonical type II TA systems such as tripartite TA systems where the regulatory role is played by a third party protein and not the antitoxin, and a unique TA system encoding a single protein with both toxin as well as antitoxin domains.
  4. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
  5. Bakar FA, Yeo CC, Harikrishna JA
    BMC Biotechnol, 2015;15:26.
    PMID: 25887501 DOI: 10.1186/s12896-015-0138-8
    Bacterial toxin-antitoxin systems usually comprise of a pair of genes encoding a stable toxin and its cognate labile antitoxin and are located in the chromosome or in plasmids of several bacterial species. Chromosomally-encoded toxin-antitoxin systems are involved in bacterial stress responses and activation of the toxins usually leads to cell death or dormancy. Overexpression of the chromosomally-encoded YoeB toxin from the yefM-yoeB toxin-antitoxin locus of the Gram-positive bacterium Streptococcus pneumoniae has been shown to cause cell death in S. pneumoniae as well as E. coli.
  6. Díaz-Orejas R, Espinosa M, Yeo CC
    Front Microbiol, 2017;8:1479.
    PMID: 28824602 DOI: 10.3389/fmicb.2017.01479
    Toxin-antitoxin (TA) genes were first reported in plasmids and were considered expendable genetic cassettes involved in the stable maintenance of the plasmid replicon by interfering with growth and/or viability of bacteria in which the plasmid was lost. TAs were later found in bacterial chromosomes and also in integrated mobile genetic elements; they were proposed to be involved in the bacterial response to stressful situations. At present, 100s of TAs have been identified and classified in up to six families (I to VI), with those belonging to the type II (constituted by two protein components) being the most studied. Based on well-characterized examples of several type II TAs, we discuss in this review that irrespective of their locations in plasmids or chromosomes, TAs functionally overlap as indicated by: (i) in both locations they can mediate the maintenance of genetic elements to which they are physical linked, and (ii) they can induce persistence or virulence in response to stress situations. Examples of functional confluences in homologous TA systems with different locations are also given. We also consider whether the physiological role of TAs is due to their genetic organization as operons or to their inherent properties, like the short lifespan of the antitoxin component.
  7. Chan WT, Yeo CC, Sadowy E, Espinosa M
    Front Microbiol, 2014;5:677.
    PMID: 25538695 DOI: 10.3389/fmicb.2014.00677
    Bacterial toxin-antitoxin (TAs) loci usually consist of two genes organized as an operon, where their products are bound together and inert under normal conditions. However, under stressful circumstances the antitoxin, which is more labile, will be degraded more rapidly, thereby unleashing its cognate toxin to act on the cell. This, in turn, causes cell stasis or cell death, depending on the type of TAs and/or time of toxin exposure. Previously based on in silico analyses, we proposed that Streptococcus pneumoniae, a pathogenic Gram-positive bacterium, may harbor between 4 and 10 putative TA loci depending on the strains. Here we have chosen the pneumococcal strain Hungary(19A)-6 which contains all possible 10 TA loci. In addition to the three well-characterized operons, namely relBE2, yefM-yoeB, and pezAT, we show here the functionality of a fourth operon that encodes the pneumococcal equivalent of the phd-doc TA. Transcriptional fusions with gene encoding Green Fluorescent Protein showed that the promoter was slightly repressed by the Phd antitoxin, and exhibited almost background values when both Phd-Doc were expressed together. These findings demonstrate that phd-doc shows the negative self-regulatory features typical for an authentic TA. Further, we also show that the previously proposed TAs XreA-Ant and Bro-XreB, although they exhibit a genetic organization resembling those of typical TAs, did not appear to confer a functional behavior corresponding to bona fide TAs. In addition, we have also discovered new interesting bioinformatics results for the known pneumococcal TAs RelBE2 and PezAT. A global analysis of the four identified toxins-antitoxins in the pneumococcal genomes (PezAT, RelBE2, YefM-YoeB, and Phd-Doc) showed that RelBE2 and Phd-Doc are the most conserved ones. Further, there was good correlation among TA types, clonal complexes and sequence types in the 48 pneumococcal strains analyzed.
  8. Yeo CC, Tan CL, Gao X, Zhao B, Poh CL
    Res. Microbiol., 2007 Sep;158(7):608-16.
    PMID: 17720458
    Pseudomonas alcaligenes NCIMB 9867 (strain P25X) is known to synthesize two isofunctional gentisate 1,2-dioxygenases (GDO; EC 1.13.11.4) as well as other enzymes involved in the degradation of xylenols and cresols via the gentisate pathway. The hbzE gene encoding what is possibly the strictly inducible gentisate 1,2-dioxygenase II (GDO-II) was cloned, overexpressed and purified as a hexahistidine fusion protein from Escherichia coli. Active recombinant GDO-II had an estimated molecular mass of 150kDa and is likely a tetrameric protein with a subunit mass of approximately 40kDa, similar to the previously characterized gentisate 1,2-dioxygenase I (GDO-I) encoded by xlnE. However, GDO-II was unable to utilize gentisate that is substituted at the carbon-4 position, unlike GDO-I which had broader substrate specificity. GDO-II also possessed different kinetic characteristics when compared to GDO-I. The hbzE-encoded GDO-II shared higher sequence identities (53%) with GDOs from Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2, compared with only 35% identity with the xlnE-encoded GDO-I. The hbzE gene was found to be part of a cluster of nine genes including the putative regulatory gene designated hbzR, which encodes an LysR-type regulator and is divergently transcribed from the other genes of the hbzHIJKLFED cluster.
  9. Lean SS, Yeo CC, Suhaili Z, Thong KL
    Front Microbiol, 2015;6:1445.
    PMID: 26779129 DOI: 10.3389/fmicb.2015.01445
    Acinetobacter baumannii is a Gram-negative nosocomial pathogen of importance due to its uncanny ability to acquire resistance to most antimicrobials. These include carbapenems, which are the drugs of choice for treating A. baumannii infections, and polymyxins, the drugs of last resort. Whole genome sequencing was performed on two clinical carbapenem-resistant A. baumannii AC29 and AC30 strains which had an indistinguishable ApaI pulsotype but different susceptibilities to polymyxin. Both genomes consisted of an approximately 3.8 Mbp circular chromosome each and several plasmids. AC29 (susceptible to polymyxin) and AC30 (resistant to polymyxin) belonged to the ST195 lineage and are phylogenetically clustered under the International Clone II (IC-II) group. An AbaR4-type resistance island (RI) interrupted the comM gene in the chromosomes of both strains and contained the bla OXA-23 carbapenemase gene and determinants for tetracycline and streptomycin resistance. AC29 harbored another copy of bla OXA-23 in a large (~74 kb) conjugative plasmid, pAC29b, but this gene was absent in a similar plasmid (pAC30c) found in AC30. A 7 kb Tn1548::armA RI which encodes determinants for aminoglycoside and macrolide resistance, is chromosomally-located in AC29 but found in a 16 kb plasmid in AC30, pAC30b. Analysis of known determinants for polymyxin resistance in AC30 showed mutations in the pmrA gene encoding the response regulator of the two-component pmrAB signal transduction system as well as in the lpxD, lpxC, and lpsB genes that encode enzymes involved in the biosynthesis of lipopolysaccharide (LPS). Experimental evidence indicated that impairment of LPS along with overexpression of pmrAB may have contributed to the development of polymyxin resistance in AC30. Cloning of a novel variant of the bla AmpC gene from AC29 and AC30, and its subsequent expression in E. coli also indicated its likely function as an extended-spectrum cephalosporinase.
  10. Ho WS, Ou HY, Yeo CC, Thong KL
    BMC Genomics, 2015;16:199.
    PMID: 25879448 DOI: 10.1186/s12864-015-1421-8
    Strains of Escherichia coli that are non-typeable by pulsed-field gel electrophoresis (PFGE) due to in-gel degradation can influence their molecular epidemiological data. The DNA degradation phenotype (Dnd(+)) is mediated by the dnd operon that encode enzymes catalyzing the phosphorothioation of DNA, rendering the modified DNA susceptible to oxidative cleavage during a PFGE run. In this study, a PCR assay was developed to detect the presence of the dnd operon in Dnd(+) E. coli strains and to improve their typeability. Investigations into the genetic environments of the dnd operon in various E. coli strains led to the discovery that the dnd operon is harboured in various diverse genomic islands.
  11. Lim KT, Yeo CC, Suhaili Z, Thong KL
    Jpn J Infect Dis, 2012;65(6):502-9.
    PMID: 23183202
    Staphylococcus aureus is a persistent human pathogen responsible for a variety of infections ranging from soft-tissue infections to bacteremia. The objective of this study was to determine genetic relatedness between methicillin-resistant S. aureus (MRSA) and methicillin-susceptible S. aureus (MSSA) strains. We isolated 35 MRSA and 21 MSSA strains from sporadic cases at the main tertiary hospital in Terengganu, Malaysia, screening them for the presence of virulence genes. Their genetic relatedness was determined by accessory gene regulator (agr) types, PCR-restriction fragment length polymorphism (RFLP) of the coa gene, pulsed-field gel electrophoresis (PFGE), S. aureus protein A (spa), and multilocus-sequence typing (MLST). We found that 57% of MRSA and 43% of MSSA strains harbored enterotoxin genes. The majority (87.5%) of the strains were agr type I. PCR-RFLP and PFGE genotyping of the coa gene revealed that MRSA strains were genetically related, whereas MSSA strains had higher heterogeneity. The combined genotype, MLST-spa type ST239-t037, was shared among MRSA and MSSA strains, indicating that MRSA strains could have evolved from MSSA strains. Two combined MLST-spa types were present in MRSA strains, whereas 7 different MLST-spa types were detected in MSSA strains, including 2 combined types (ST779-t878 and ST1179-t267) that have not been reported in Malaysia. In conclusion, enterotoxin genes were more prevalent in MRSA than in MSSA strains in the Terengganu hospital. The MSSA strains were genetically more diverse than the MRSA strains.
  12. Lean SS, Yeo CC, Suhaili Z, Thong KL
    Int J Antimicrob Agents, 2015 Feb;45(2):178-82.
    PMID: 25481460 DOI: 10.1016/j.ijantimicag.2014.10.015
    Acinetobacter baumannii has emerged as an important nosocomial pathogen owing to its increasing resistance to most, if not all, antibiotics in clinical use. We recently reported the occurrence of extensively drug-resistant (XDR) A. baumannii isolates in a Malaysian tertiary hospital. The genome of one of these XDR isolates (A. baumannii AC12) was completely sequenced and comparative genome analyses were performed to elucidate the genetic basis of its antimicrobial resistance. The A. baumannii AC12 genome consists of a 3.8 Mbp circular chromosome and an 8731 bp cryptic plasmid, pAC12. It belongs to the ST195 lineage and is most closely related to A. baumannii BJAB0715 as well as other strains of the international clone III (IC-III) group. Two antibiotic resistance islands (RIs), designated AC12-RI1 and AC12-RI2, were found in the AC12 chromosome along with a 7 kb Tn1548::armA island conferring resistance to aminoglycosides and macrolides. The 22.8 kb AC12-RI1 interrupts the comM gene and harbours the carbapenem resistance gene blaOXA-23 flanked by ISAba1 within a Tn2006-like structure. AC12-RI1 also harbours resistance determinants for aminoglycosides, tetracyclines and sulphonamides. The 10.3 kb IS26-flanked AC12-RI2 is a derivative of AbGRI2-1, containing aphA1b and blaTEM genes (conferring aminoglycoside and β-lactam resistance, respectively). The presence of numerous genes mediating resistance to various antibiotics in novel RI structures as well as other genes encoding drug transporters and efflux pumps in A. baumannii AC12 most likely contributed to its XDR characteristics.
  13. Chan WT, Garcillán-Barcia MP, Yeo CC, Espinosa M
    FEMS Microbiol Rev, 2023 Sep 05;47(5).
    PMID: 37715317 DOI: 10.1093/femsre/fuad052
    Toxin-antitoxin (TA) systems are entities found in the prokaryotic genomes, with eight reported types. Type II, the best characterized, is comprised of two genes organized as an operon. Whereas toxins impair growth, the cognate antitoxin neutralizes its activity. TAs appeared to be involved in plasmid maintenance, persistence, virulence, and defence against bacteriophages. Most Type II toxins target the bacterial translational machinery. They seem to be antecessors of Higher Eukaryotes and Prokaryotes Nucleotide-binding (HEPN) RNases, minimal nucleotidyltransferase domains, or CRISPR-Cas systems. A total of four TAs encoded by Streptococcus pneumoniae, RelBE, YefMYoeB, Phd-Doc, and HicAB, belong to HEPN-RNases. The fifth is represented by PezAT/Epsilon-Zeta. PezT/Zeta toxins phosphorylate the peptidoglycan precursors, thereby blocking cell wall synthesis. We explore the body of knowledge (facts) and hypotheses procured for Type II TAs and analyse the data accumulated on the PezAT family. Bioinformatics analyses showed that homologues of PezT/Zeta toxin are abundantly distributed among 14 bacterial phyla mostly in Proteobacteria (48%), Firmicutes (27%), and Actinobacteria (18%), showing the widespread distribution of this TA. The pezAT locus was found to be mainly chromosomally encoded whereas its homologue, the tripartite omega-epsilon-zeta locus, was found mostly on plasmids. We found several orphan pezT/zeta toxins, unaccompanied by a cognate antitoxin.
  14. Suhaili Z, Lean SS, Yahya A, Mohd Desa MN, Ali AM, Yeo CC
    Genome Announc, 2014;2(2).
    PMID: 24723714 DOI: 10.1128/genomeA.00271-14
    Here, we report the draft genome sequence of a methicillin-resistant Staphylococcus aureus (MRSA) strain, KT/Y21, isolated from a blood sample of a pediatric patient. This strain belongs to sequence type 772 (ST772), harbors the staphylococcal cassette chromosome mec element (SCCmec) type V, and is positive for the Panton-Valentine leukocidin (PVL) pathogenic determinant.
  15. Ho WS, Tan LK, Ooi PT, Yeo CC, Thong KL
    BMC Vet Res, 2013;9:109.
    PMID: 23731465 DOI: 10.1186/1746-6148-9-109
    Postweaning diarrhea caused by pathogenic Escherichia coli, in particular verotoxigenic E. coli (VTEC), has caused significant economic losses in the pig farming industry worldwide. However, there is limited information on VTEC in Malaysia. The objective of this study was to characterize pathogenic E. coli isolated from post-weaning piglets and growers with respect to their antibiograms, carriage of extended-spectrum beta-lactamases, pathotypes, production of hemolysins and fimbrial adhesins, serotypes, and genotypes.
  16. Yap WH, Khoo KS, Lim SH, Yeo CC, Lim YM
    Phytomedicine, 2012 Jan 15;19(2):183-91.
    PMID: 21893403 DOI: 10.1016/j.phymed.2011.08.058
    Maslinic acid, a natural pentacyclic triterpene has been shown to inhibit growth and induce apoptosis in some tumour cell lines. We studied the molecular response of Raji cells towards maslinic acid treatment. A proteomics approach was employed to identify the target proteins. Seventeen differentially expressed proteins including those involved in DNA replication, microtubule filament assembly, nucleo-cytoplasmic trafficking, cell signaling, energy metabolism and cytoskeletal organization were identified by MALDI TOF-TOF MS. The down-regulation of stathmin, Ran GTPase activating protein-1 (RanBP1), and microtubule associated protein RP/EB family member 1 (EB1) were confirmed by Western blotting. The study of the effect of maslinic acid on Raji cell cycle regulation showed that it induced a G1 cell cycle arrest. The differential proteomic changes in maslinic acid-treated Raji cells demonstrated that it also inhibited expression of dUTPase and stathmin which are known to induce early S and G2 cell cycle arrests. The mechanism of maslinic acid-induced cell cycle arrest may be mediated by inhibiting cyclin D1 expression and enhancing the levels of cell cycle-dependent kinase (CDK) inhibitor p21 protein. Maslinic acid suppressed nuclear factor-kappa B (NF-κB) activity which is known to stimulate expression of anti-apoptotic and cell cycle regulatory gene products. These results suggest that maslinic acid affects multiple signaling molecules and inhibits fundamental pathways regulating cell growth and survival in Raji cells.
  17. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links