Displaying all 7 publications

Abstract:
Sort:
  1. Choo KK, Chong PP, Ho AS, Yong PV
    Eur J Clin Microbiol Infect Dis, 2015 Dec;34(12):2421-7.
    PMID: 26463450 DOI: 10.1007/s10096-015-2497-4
    The purpose of this investigation was to characterise the interactions of Cryptococcus neoformans with mammalian host alveolar epithelial cells and alveolar macrophages, with emphasis on the roles of the cryptococcal capsule and the host cell cytoskeletons. The adherence and internalisation of C. neoformans into mammalian lung cells and the roles of host cell cytoskeletons in host-pathogen interactions were studied using in vitro models coupled with a differential fluorescence assay, fluorescence staining, immunofluorescence and drug inhibition of actin and microtubule polymerisation. Under conditions devoid of opsonin and macrophage activation, C. neoformans has a high affinity towards MH-S alveolar macrophages, yet associated poorly to A549 alveolar epithelial cells. Acapsular C. neoformans adhered to and internalised into the mammalian cells more effectively compared to encapsulated cryptococci. Acapsular C. neoformans induced prominent actin reorganisation at the host-pathogen interface in MH-S alveolar macrophages, but minimally affected actin reorganisation in A549 alveolar epithelial cells. Acapsular C. neoformans also induced localisation of microtubules to internalised cryptococci in MH-S cells. Drug inhibition of actin and microtubule polymerisation both reduced the association of acapsular C. neoformans to alveolar macrophages. The current study visualises and confirms the interactions of C. neoformans with mammalian alveolar cells during the establishment of infection in the lungs. The acapsular form of C. neoformans effectively adhered to and internalised into alveolar macrophages by inducing localised actin reorganisation, relying on the host's actin and microtubule activities.
  2. Liew KL, Jee JM, Yap I, Yong PV
    PLoS One, 2016;11(4):e0153356.
    PMID: 27054608 DOI: 10.1371/journal.pone.0153356
    Cryptococcus neoformans is an encapsulated basidiomycetous yeast commonly associated with pigeon droppings and soil. The opportunistic pathogen infects humans through the respiratory system and the metabolic implications of C. neoformans infection have yet to be explored. Studying the metabolic profile associated with the infection could lead to the identification of important metabolites associated with pulmonary infection. Therefore, the aim of the study was to simulate cryptococcal infection at the primary site of infection, the lungs, and to identify the metabolic profile and important metabolites associated with the infection at low and high multiplicity of infections (MOI). The culture supernatant of lung epithelial cells infected with C. neoformans at MOI of 10 and 100 over a period of 18 hours were analysed using gas chromatography mass spectrometry. The metabolic profiles obtained were further analysed using multivariate analysis and the pathway analysis tool, MetaboAnalyst 2.0. Based on the results from the multivariate analyses, ten metabolites were selected as the discriminatory metabolites that were important in both the infection conditions. The pathways affected during early C. neoformans infection of lung epithelial cells were mainly the central carbon metabolism and biosynthesis of amino acids. Infection at a higher MOI led to a perturbance in the β-alanine metabolism and an increase in the secretion of pantothenic acid into the growth media. Pantothenic acid production during yeast infection has not been documented and the β-alanine metabolism as well as the pantothenate and CoA biosynthesis pathways may represent underlying metabolic pathways associated with disease progression. Our study suggested that β-alanine metabolism and the pantothenate and CoA biosynthesis pathways might be the important pathways associated with cryptococcal infection.
  3. Liew K, Yong PV, Lim YM, Navaratnam V, Ho AS
    Toxicol In Vitro, 2014 Apr;28(3):335-9.
    PMID: 24291160 DOI: 10.1016/j.tiv.2013.11.008
    Metastasis contributes to the escalating mortality rate among cancer patients worldwide. The search for novel and more effective anti-metastatic agent is crucial owing to the lack of anticancer drugs that can successfully combat metastasis. Hence, this study aims to examine the effects of 2-Methoxy-1,4-Naphthoquinone (MNQ) towards the metastasis of MDA-MB-231 cells. In invasion assays, the number of cells permeating across a Matrigel barrier was found to be decreased in a dose-dependent manner upon treatment with MNQ (0-7.5 μM). In wound-healing migration assays, MNQ exhibited dose-dependent inhibition of cell migration in which significant reduction in the zone of closure was observed as compared to untreated controls. Furthermore, the proteolytic activity of a pivotal metastatic mediator, matrix metalloproteinase-9 (MMP-9) was also downregulated by MNQ as determined by gelatin zymography. This study reports for the first time, the ability of MNQ to inhibit the invasion and migration characteristics of a highly metastatic MDA-MB-231 cancer cell line.
  4. Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F
    J Appl Microbiol, 2008 Dec;105(6):2169-77.
    PMID: 19120662 DOI: 10.1111/j.1365-2672.2008.03912.x
    The aims of the present study were to determine whether Allium sativum (garlic) extract has any effect on the morphology transformation of Candida albicans, and to investigate whether it could alter the gene expression level of SIR2, a morphogenetic control gene and SAP4, a gene encoding secreted aspartyl proteinase.
  5. Yong PV, Chong PP, Lau LY, Yeoh RS, Jamal F
    Mycopathologia, 2008 Feb;165(2):81-7.
    PMID: 18266075 DOI: 10.1007/s11046-007-9086-8
    The incidence of candidemia and invasive candidiasis have increased markedly due to the increasing number of immunocompromised patients. There are five major medically important species of Candida with their frequency of isolation in the diminishing order namely Candida albicans, Candida parapsilosis, Candida tropicalis, Candida glabrata and Candida krusei. In addition, there are numerous other species of Candida which differ in their genetic makeup, virulence properties, drug susceptibilities and sugar assimilation capabilities. In this report, an unusual Candida species was isolated from the blood of two leukaemic patients. Conventional culture and biochemical tests identified the Candida species as C. parapsilosis. Using fungal-specific oligonucleotide primers ITS1 and ITS4, we managed to amplify the ribosomal RNA gene and its internal transcribed spacer region from the genomic DNA of these isolates. The PCR products were then purified and subjected to automated DNA sequencing using BLAST and CLUSTAL sequence analysis identified these isolates to be Candida orthopsilosis. Candida orthopsilosis is a new species recently identified in 2005, being morphologically indistinguishable from C. parapsilosis and was previously classified as a subspecies of C. parapsilosis. This report highlights the importance of complementing traditional culture and biochemical-based identification methods with DNA-based molecular assays such as PCR as the latter is more superior in terms of its discriminatory power and speed.
  6. Liew K, Yong PV, Navaratnam V, Lim YM, Ho AS
    Phytomedicine, 2015 May 15;22(5):517-27.
    PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007
    We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line.
  7. Ong JY, Yong PV, Lim YM, Ho AS
    Life Sci, 2015 Aug 15;135:158-64.
    PMID: 25896662 DOI: 10.1016/j.lfs.2015.03.019
    The compound 2-methoxy-1,4-naphthoquinone (MNQ) was previously shown to be cytotoxic against several cancer cell lines, but its mode of action is poorly understood. In this study, we aimed to explore the molecular mechanism of MNQ-induced cytotoxicity of A549 lung adenocarcinoma cells.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links