Displaying all 3 publications

  1. Akbar John, B., Kamaruzzaman, B.Y., Jalal, K.C.A., Zaleha, K.
    Endotoxins (chemically known as Lipopolysaccharide) from gram-negative microorganisms initiates clot formation in blood when it is accidentally encountered by horseshoe crab blood stream. This property was extensively studied by various researchers as a result Limulus Amebocyte Lysate (LAL) test was established. The LAL tests in general, 3 to 300 times more sensitive than the United States Pharmacopeial (USP) rabbit pyrogen test method. It is apparent that major differences among the LAL preparations lie in the area of sensitivity. Differences, up to 100-fold, exist in the sensitivity of the various LAL preparations to the same endotoxin. Based on the above perspective, a portable Kit (Endo sensor) was developed to detect the presence of bacterial endotoxin in liquid biological samples using Tachypleus Amebocyte Lysate (TAL) as a source. Sensitivity of the Kit was determined using various concentrations of prepared endotoxin standards and pyrogen free water samples. It was observed that Endo sensor could detect up to nano gram level of endotoxin in liquid biological samples which could be expressed in (EU/ml) and the labeled sensitivity of the lysated product was 0.125 EU/ml. The gel clotting principle method was utilized for the detection of bacterial endotoxin in liquid biological samples.
  2. Kamaruzzaman BY, Ong MC, Zaleha K, Shahbudin S
    Pak J Biol Sci, 2008 Sep 15;11(18):2249-53.
    PMID: 19137835
    Muscle and feather in tissue of 40 juveniles and 40 adult green-lipped mussel Perna veridis (L.) collected from Muar Estuary, Johor were analyzed for copper (Cu), cadmium (Cd), lead (Pb) and zinc (Zn) concentration using a fast and sensitive Inductively Coupled Plasma Mass Spectrometer (ICP-MS). In this study, the average concentration of Cu was 8.96 microg g(-1) dry weights, Cd with 0.58 microg g(-1) dry weight, Pb averaging 2.28 microg g(-1) dry weights and Zn averaged to 86.73 microg g(-1) dry weight. The highest accumulation of metal studied was found in feather sample compared to the muscle. The positive relationship of Cu, Cd, Pb and Zn with P. virdis length suggesting that the accumulation of these metals were formed in the mussel. In all cases, metal levels found were lower than the guideline of international standards of reference and the examined bivalve were not associated with enhanced metal content in their tissues and were safe within the limits for human consumption.
  3. Ismail N, Ohtsuka S, Maran BA, Tasumi S, Zaleha K, Yamashita H
    Parasite, 2013;20:42.
    PMID: 24165196 DOI: 10.1051/parasite/2013041
    The complete life cycle of a pennellid copepod Peniculus minuticaudae Shiino, 1956 is proposed based on the discovery of all post-embryonic stages together with the post-metamorphic adult females infecting the fins of threadsail filefish Stephanolepis cirrhifer (Monacanthidae) cultured in a fish farm at Ehime Prefecture, Japan. The hatching stage was the infective copepodid. The life cycle of P. minuticaudae consists of six stages separated by moults: the copepodid, four chalimi and adult. In this study, the adult males were observed frequently in precopulatory amplexus with various stages of females however, copulation occurs only between adults. Fertilized pre-metamorphic adult females carrying spermatophores may detach from the host and settle again before undergoing massive differential growth into the post-metamorphic adult female. Comparison of the life cycle of P. minuticaudae has been made with three known pennellids: Lernaeocera branchialis (Linnaeus, 1767), Cardiodectes medusaeus (Wilson, 1908) and Lernaeenicus sprattae (Sowerby, 1806). Among the compared species, P. minuticaudae is the first ectoparasitic pennellid to be discovered to complete its life cycle on a single host without any change in infection site preferences between infective copepodid and fertilized pre-metamorphic female.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links