Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Zandi K
    Methods Mol Biol, 2016;1426:255-62.
    PMID: 27233278 DOI: 10.1007/978-1-4939-3618-2_23
    Screening of viral inhibitors through induction of cytopathic effects (CPE) by conventional method has been applied for various viruses including Chikungunya virus (CHIKV), a significant arbovirus. However, it does not provide the information about cytopathic effect from the beginning and throughout the course of virus replication. Conventionally, most of the approaches are constructed on laborious end-point assays which are not capable for detecting minute and rapid changes in cellular morphology. Therefore, we developed a label-free and dynamical method for monitoring the cellular features that comprises cell attachment, proliferation, and viral cytopathogenicity, known as the xCELLigence real-time cell analysis (RTCA). In this chapter, we provide a RTCA protocol for quantitative analysis of CHIKV replication using an infected Vero cell line treated with ribavirin as an in vitro model.
  2. Zakaryan H, Arabyan E, Oo A, Zandi K
    Arch Virol, 2017 Sep;162(9):2539-2551.
    PMID: 28547385 DOI: 10.1007/s00705-017-3417-y
    Flavonoids are widely distributed as secondary metabolites produced by plants and play important roles in plant physiology, having a variety of potential biological benefits such as antioxidant, anti-inflammatory, anticancer, antibacterial, antifungal and antiviral activity. Different flavonoids have been investigated for their potential antiviral activities and several of them exhibited significant antiviral properties in in vitro and even in vivo studies. This review summarizes the evidence for antiviral activity of different flavonoids, highlighting, where investigated, the cellular and molecular mechanisms of action on viruses. We also present future perspectives on therapeutic applications of flavonoids against viral infections.
  3. Lani R, Mohd Rahim NF, Hassan H, Yaghoobi R, Chang LY, AbuBakar S, et al.
    Eur Rev Med Pharmacol Sci, 2015;19(3):461-6.
    PMID: 25720719
    The Crimean-Congo haemorrhagic fever virus (CCHFV), which is transmitted by the ticks of Hyalomma spp. in general and H. marginatumin particular, can cause severe disease in humans, with mortality rates of 3-30%. Other than from the bites of infected ticks, CCHFV can also be transmitted through contact with patients with the acute phase of infection or contact with blood or tissues from viraemic livestock.  Outbreaks of human cases of haemorrhagic manifestations have been documented since 1945 and described in parts of Africa, Asia, Eastern Europe and the Middle East and most recently India in 2011. In addition, serological evidence of the disease has been reported in some countries where no human cases were reported. As regional neighbours China and India have been affected by this virus, this study was conducted to determine the seroprevalence of CCHFV among Orang Asli population of Malaysia as the most at risk people who residing in the deep forests.
  4. Shu MH, Appleton D, Zandi K, AbuBakar S
    PMID: 23497105 DOI: 10.1186/1472-6882-13-61
    Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii.
  5. Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K
    Int J Mol Sci, 2012;13(12):16785-95.
    PMID: 23222683 DOI: 10.3390/ijms131216785
    Japanese encephalitis (JE), a mosquito-borne viral disease, is endemic to the entire east and southeast Asia, and some other parts of the world. Currently, there is no effective therapeutic available for JE; therefore, finding the effective antiviral agent against JEV replication is crucial. In the present study, the in vitro antiviral activity of baicalein and quercetin, two purportedly antiviral bioflavonoids, was evaluated against Japanese encephalitis virus (JEV) replication in Vero cells. Anti-JEV activities of these compounds were examined on different stages of JEV replication cycle. The effects of the compounds on virus replication were determined by foci forming unit reduction assay (FFURA) and quantitative RT-PCR. Baicalein showed potent antiviral activity with IC(50) = 14.28 µg/mL when it was introduced to the Vero cells after adsorption of JEV. Quercetin exhibited weak anti-JEV effects with IC(50) = 212.1 µg/mL when the JEV infected cells were treated with the compound after virus adsorption. However, baicalein exhibited significant effect against JEV adsorption with IC(50) = 7.27 µg/mL while quercetin did not show any anti-adsorption activity. Baicalein also exhibited direct extracellular virucidal activity on JEV with IC(50) = 3.44 µg/mL. However, results of quantitative RT-PCR experiments confirmed the findings from FFURA. This study demonstrated that baicalein should be considered as an appropriate candidate for further investigations, such as the study of molecular and cellular mechanism(s) of action and in vivo evaluation for the development of an effective antiviral compound against Japanese encephalitis virus.
  6. Ahmadi A, Zorofchian Moghadamtousi S, Abubakar S, Zandi K
    Biomed Res Int, 2015;2015:825203.
    PMID: 26484353 DOI: 10.1155/2015/825203
    From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.
  7. Marlina S, Shu MH, AbuBakar S, Zandi K
    Parasit Vectors, 2015;8:579.
    PMID: 26553263 DOI: 10.1186/s13071-015-1104-y
    The xCELLigence real-time cell analysis (RTCA) system is an established electronic cell sensor array. This system uses microelectronic biosensor technology that is verified for real-time, label-free, dynamic and non-offensive monitoring of cellular features, including detection of viral cytopathic effect (CPE). Screening viral replication inhibitors based on presence of CPE has been applied for different viruses, including chikungunya virus (CHIKV). However, most CPE-based methods, including MTT and MTS assays, do not provide information on the initiation of CPE nor the changes in reaction rate of the virus propagation over time. Therefore, in this study we developed an RTCA method as an accurate and time-based screen for antiviral compounds against CHIKV.
  8. Moghadamtousi SZ, Nikzad S, Kadir HA, Abubakar S, Zandi K
    Mar Drugs, 2015 Jul;13(7):4520-38.
    PMID: 26204947 DOI: 10.3390/md13074520
    Biodiversity of the marine world is only partially subjected to detailed scientific scrutiny in comparison to terrestrial life. Life in the marine world depends heavily on marine fungi scavenging the oceans of lifeless plants and animals and entering them into the nutrient cycle by. Approximately 150 to 200 new compounds, including alkaloids, sesquiterpenes, polyketides, and aromatic compounds, are identified from marine fungi annually. In recent years, numerous investigations demonstrated the tremendous potential of marine fungi as a promising source to develop new antivirals against different important viruses, including herpes simplex viruses, the human immunodeficiency virus, and the influenza virus. Various genera of marine fungi such as Aspergillus, Penicillium, Cladosporium, and Fusarium were subjected to compound isolation and antiviral studies, which led to an illustration of the strong antiviral activity of a variety of marine fungi-derived compounds. The present review strives to summarize all available knowledge on active compounds isolated from marine fungi with antiviral activity.
  9. Zorofchian Moghadamtousi S, Hajrezaei M, Abdul Kadir H, Zandi K
    PMID: 24109490 DOI: 10.1155/2013/273712
    Loranthus micranthus Linn. is a medicinal plant from the Loranthaceae family commonly known as an eastern Nigeria species of the African mistletoe and is widely used in folkloric medicine to cure various ailments and diseases. It is semiparasitic plant because of growing on various host trees and shrubs and absorbing mineral nutrition and water from respective host. Hence, the phytochemicals and biological activities of L. micranthus demonstrated strong host and harvesting period dependency. The leaves have been proved to possess immunomodulatory, antidiabetic, antimicrobial, antihypertensive, antioxidant, antidiarrhoeal, and hypolipidemic activities. This review summarizes the information and findings concerning the current knowledge on the biological activities, pharmacological properties, toxicity, and chemical constituents of Loranthus micranthus.
  10. Lani R, Moghaddam E, Haghani A, Chang LY, AbuBakar S, Zandi K
    Ticks Tick Borne Dis, 2014 Sep;5(5):457-65.
    PMID: 24907187 DOI: 10.1016/j.ttbdis.2014.04.001
    Several important human diseases worldwide are caused by tick-borne viruses. These diseases have become important public health concerns in recent years. The tick-borne viruses that cause diseases in humans mainly belong to 3 families: Bunyaviridae, Flaviviridae, and Reoviridae. In this review, we focus on therapeutic approaches for several of the more important tick-borne viruses from these 3 families. These viruses are Crimean-Congo hemorrhagic fever virus (CCHF) and the newly discovered tick-borne phleboviruses, known as thrombocytopenia syndromevirus (SFTSV), Heartland virus and Bhanja virus from the family Bunyaviridae, tick-borne encephalitis virus (TBEV), Powassan virus (POWV), Louping-ill virus (LIV), Omsk hemorrhagic fever virus (OHFV), Kyasanur Forest disease virus (KFDV), and Alkhurma hemorrhagic fever virus (AHFV) from the Flaviviridae family. To date, there is no effective antiviral drug available against most of these tick-borne viruses. Although there is common usage of antiviral drugs such as ribavirin for CCHF treatment in some countries, there are concerns that ribavirin may not be as effective as once thought against CCHF. Herein, we discuss also the availability of vaccines for the control of these viral infections. The lack of treatment and prevention approaches for these viruses is highlighted, and we hope that this review may increase public health awareness with regard to the threat posed by this group of viruses.
  11. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K
    Biomed Res Int, 2014;2014:186864.
    PMID: 24877064 DOI: 10.1155/2014/186864
    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
  12. Shirazi FS, Moghaddam E, Mehrali M, Oshkour AA, Metselaar HS, Kadri NA, et al.
    J Biomed Mater Res A, 2014 Nov;102(11):3973-85.
    PMID: 24376053 DOI: 10.1002/jbm.a.35074
    Calcium silicate (CS, CaSiO3 ) is a bioactive, degradable, and biocompatible ceramic and has been considered for its potential in the field of orthopedic surgery. The objective of this study is the fabrication and characterization of the β-CS/poly(1.8-octanediol citrate) (POC) biocomposite, with the goals of controlling its weight loss and improving its biological and mechanical properties. POC is one of the most biocompatible polymers, and it is widely used in biomedical engineering applications. The degradation and bioactivity of the composites were determined by soaking the composites in phosphate-buffered saline and simulated body fluid, respectively. Human osteoblast cells were cultured on the composites to determine their cell proliferation and adhesion. The results illustrated that the flexural and compressive strengths were significantly enhanced by a modification of 40% POC. It was also concluded that the degradation bioactivity and amelioration of cell proliferation increased significantly with an increasing β-CS content.
  13. Zandi K, Lani R, Wong PF, Teoh BT, Sam SS, Johari J, et al.
    Molecules, 2012;17(3):2437-45.
    PMID: 22374315 DOI: 10.3390/molecules17032437
    This study investigates the effects of 2-phenyl-1-benzopyran-4-one (flavone) on DENV-2 infectivity in Vero cells. Virus adsorption and attachment and intracellular virus replication were investigated using a foci forming unit assay (FFUA) and quantitative RT-PCR, respectively. Addition of flavone (100 μg/mL) significantly increased the number of DENV-2 foci by 35.66% ± 1.52 and 49.66% ± 2.51 when added during and after virus adsorption to the Vero cells, respectively. The average foci size after 4 days of infection increased by 33% ± 2.11 and 89% ± 2.13. The DENV-2 specific RNA copy number in the flavone-treated infected cells increased by 6.41- and 23.1-fold when compared to the mock-treated infected cells. Flavone (100 μg/mL) did not promote or inhibit Vero cell proliferation. The CC₅₀ value of flavone against Vero cells was 446 µg/mL. These results suggest that flavone might enhance dengue virus replication by acting antagonistically towards flavonoids known to inhibit dengue virus replication.
  14. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    PMID: 23140177 DOI: 10.1186/1472-6882-12-214
    Dengue is a serious arboviral disease currently with no effective antiviral therapy or approved vaccine available. Therefore, finding the effective compound against dengue virus (DENV) replication is very important. Among the natural compounds, bioflavonoids derived mainly from plants are of interest because of their biological and medicinal benefits.
  15. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    Virol J, 2011;8:560.
    PMID: 22201648 DOI: 10.1186/1743-422X-8-560
    Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound.
  16. Khamisipour G, Jadidi-Niaragh F, Jahromi AS, Zandi K, Hojjat-Farsangi M
    Tumour Biol., 2016 Aug;37(8):10021-39.
    PMID: 27155851 DOI: 10.1007/s13277-016-5059-1
    Resistance to chemotherapy agents is a major challenge infront of cancer patient treatment and researchers. It is known that several factors, such as multidrug resistance proteins and ATP-binding cassette families, are cell membrane transporters that can efflux several substrates such as chemotherapy agents from the cell cytoplasm. To reduce the adverse effects of chemotherapy agents, various targeted-based cancer therapy (TBCT) agents have been developed. TBCT has revolutionized cancer treatment, and several agents have shown more specific effects on tumor cells than chemotherapies. Small molecule inhibitors and monoclonal antibodies are specific agents that mostly target tumor cells but have low side effects on normal cells. Although these agents have been very useful for cancer treatment, however, the presence of natural and acquired resistance has blunted the advantages of targeted therapies. Therefore, development of new options might be necessary. A better understanding of tumor cell resistance mechanisms to current treatment agents may provide an appropriate platform for developing and improving new treatment modalities. Therefore, in this review, different mechanisms of tumor cell resistance to chemotherapy drugs and current targeted therapies have been described.
  17. Hassandarvish P, Oo A, Jokar A, Zukiwski A, Proniuk S, Abu Bakar S, et al.
    J Antimicrob Chemother, 2017 09 01;72(9):2438-2442.
    PMID: 28666323 DOI: 10.1093/jac/dkx191
    Objectives: With no clinically effective antiviral options available, infections and fatalities associated with dengue virus (DENV) have reached an alarming level worldwide. We have designed this study to evaluate the efficacy of the celecoxib derivative AR-12 against the in vitro replication of all four DENV serotypes.

    Methods: Each 24-well plate of Vero cells infected with all four DENV serotypes, singly, was subjected to treatments with various doses of AR-12. Following 48 h of incubation, inhibitory efficacies of AR-12 against the different DENV serotypes were evaluated by conducting a virus yield reduction assay whereby DENV RNA copy numbers present in the collected supernatant were quantified using qRT-PCR. The underlying mechanism(s) possibly involved in the compound's inhibitory activities were then investigated by performing molecular docking on several potential target human and DENV protein domains.

    Results: The qRT-PCR data demonstrated that DENV-3 was most potently inhibited by AR-12, followed by DENV-1, DENV-2 and DENV-4. Our molecular docking findings suggested that AR-12 possibly exerted its inhibitory effects by interfering with the chaperone activities of heat shock proteins.

    Conclusions: These results serve as vital information for the design of future studies involving in vitro mechanistic studies and animal models, aiming to decipher the potential of AR-12 as a potential therapeutic option for DENV infection.

  18. Oo A, Teoh BT, Sam SS, Bakar SA, Zandi K
    Arch Virol, 2019 Feb;164(2):585-593.
    PMID: 30392049 DOI: 10.1007/s00705-018-4083-4
    At present, there is no effective antiviral agent for Zika virus (ZIKV), an arbovirus that is known for its teratogenic effects on newborns. Baicalein and baicalin were found to be capable of downregulating ZIKV replication up to 10 hours postinfection, while prophylactic effects were evident in pre-treated cells. Baicalein exhibited its highest potency during intracellular ZIKV replication, whereas baicalin was most effective against virus entry. Our in silico interaction assays predicted that both compounds exhibited the strongest binding affinities towards ZIKV NS5, while the virus envelope glycoprotein was the least likely target protein. These findings serve as a crucial platform for further in-depth studies to decipher the underlying anti-ZIKV mechanism(s) of each compound.
  19. Jindal HM, Zandi K, Ong KC, Velayuthan RD, Rasid SM, Samudi Raju C, et al.
    PeerJ, 2017;5:e3887.
    PMID: 29018620 DOI: 10.7717/peerj.3887
    BACKGROUND: Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined.

    METHODS: TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic effect was checked using the chequerboard assay. ICR male mice were used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with ceftriaxone.

    RESULTS: The results obtained from TEM and SEM indicated that the hybrid peptides caused significant morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage. The DNA retardation assay revealed that at 62.5 µg/ml all the hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In vitro synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each other and with conventional drugs erythromycin and ceftriaxone. The in vivo therapeutic efficacy results revealed that the hybrid peptide RN7-IN8 at 20 mg/kg could improve the survival rate of pneumococcal bacteremia infected mice, as 50% of the infected mice survived up to seven days post-infection. In vivo antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the standard antibiotic ceftriaxone at (20 mg/kg + 20 mg/kg) as 100% of the infected mice survived up to seven days post-infection.

    DISCUSSION: Our results suggest that attacking and breaching the cell wall/membrane is most probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another mechanism of action by inhibiting intracellular functions such as DNA synthesis. AMPs could play a great role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard drugs.

  20. Oo A, Rausalu K, Merits A, Higgs S, Vanlandingham D, Bakar SA, et al.
    Antiviral Res, 2018 02;150:101-111.
    PMID: 29269135 DOI: 10.1016/j.antiviral.2017.12.012
    The past decade has seen the re-emergence of Chikungunya virus (CHIKV) as a major global health threat, affecting millions around the world. Although fatal infections are rare among infected patients, the occurrence of long-lasting polyarthralgia has a significant impact on patients' quality of lives and ability to work. These issues were the stimuli for this study to determine the potential of baicalin, a bioflavonoid, as the novel antiviral compound against CHIKV. It was found that baicalin was well tolerated by Vero, BHK-21 and HEK 293T cells with maximal nontoxic doses >600 μM, ≈ 350 μM and ≈110 μM, respectively. Antiviral assays indicated that baicalin was the most effective inhibitor when tested for its direct virucidal activity with EC50 ≈ 7 μM, followed by inhibition of virus entry into the host cell, attachment of virus particle to cellular receptors and finally intracellular replication of viral RNA genome. In silico analysis using molecular docking demonstrated close interactions between baicalin and CHIKV envelope protein with considerably strong binding affinity of -9.7 kcal/mol. qRT-PCR analysis revealed that baicalin had the greatest effect on the synthesis of viral negative stand RNA with EC50 ≈ 0.4 μM followed by the inhibition of synthesis of positive-strand genomic (EC50 ≈ 13 μM) and subgenomic RNAs (EC50 ≈ 14 μM). These readings indicate that the compound efficiently inhibits replicase complexes formation but is a less potent inhibitor of existing replicase complexes. Coherent with this hypothesis, the use of recombinant CHIKV replicons harboring Renilla luciferase marker showed that replication of corresponding replicon RNAs was only slightly downregulated at higher doses of baicalin, with EC50 > 100 μM. Immunofluorescence and western blotting experiments demonstrated dose-dependent inhibition of expression of different viral proteins. It was also observed that levels of important protein markers for cellular autophagy (LC3) and apoptosis (Bax) were reduced in baicalin treatment groups as compared with untreated virus infected controls. In summary, given its low toxicity and high efficacy against CHIKV, baicalin has great potential to be developed as the novel antiviral compound for CHIKV. In vivo studies to evaluate its activity in a more complexed system represent a necessary step for future analysis.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links