Displaying all 9 publications

Abstract:
Sort:
  1. Peng Y, Zhou F, Cui J, Du K, Leng Q, Yang F, et al.
    Environ Sci Pollut Res Int, 2017 Jul;24(19):16206-16219.
    PMID: 28540543 DOI: 10.1007/s11356-017-9221-0
    The Three Gorges Dam's construction and industrial transfer have resulted in a new air pollution pattern with the potential to threaten the reservoir eco-environment. To assess the impact of socioeconomic factors on the pattern of air quality vairation and economical risks, concentrations of SO2, NO2, and PM10, industry genres, and meteorological conditions were selected in the Three Gorges Reservoir of Chongqing (TGRC) during 2006-2015. Results showed that air quality had improved to some extent, but atmospheric NO2 showed an increased trend during 2011-2015. Spatially, higher atmospheric NO2 extended to the surrounding area. The primary industry, especially for agriculture, had shown to be responsible for the remarkable increase of atmospheric NO2 (p 
  2. Dai C, Zhou H, You X, Duan Y, Tu Y, Liu S, et al.
    Environ Sci Pollut Res Int, 2020 May;27(13):15188-15197.
    PMID: 32072419 DOI: 10.1007/s11356-020-08064-0
    Transport of environmental pollutants in groundwater systems can be greatly influenced by colloids. In this study, the cotransport of Pb2+ and silica (SiO2) colloids at different Pb2+ concentrations was systematically investigated by batch adsorption and saturated sand column experiments. Results showed that SiO2 colloids had low adsorption capacity for Pb2+ (less than 1% of the input) compared with sands. In saturated porous media, SiO2 colloids showed a high mobility; however, with the increase of Pb2+ concentration in the sand column, the mobility of SiO2 colloids gradually decreased. Notably, SiO2 colloids could facilitate Pb2+ transport, although they did not serve as effective carriers of Pb2+. Under the condition of low Pb2+ concentration, SiO2 colloids promoted the Pb2+ transport mainly through the way of "transport channel," while changing the porosity of the medium and masking medium adsorption sites were the main mechanisms of SiO2 colloid-facilitated Pb2+ transport under the condition of high Pb2+ concentration. The discovery of this non-adsorption effect of colloids would improve our understanding of colloid-facilitated Pb2+ transport in saturated porous media, which provided new insights into the role of colloids, especially colloids with weak Pb2+ adsorption capacity, in Pb2+ occurrence and transport in soil-groundwater systems.
  3. Zhu B, Qian C, Zhou F, Guo J, Chen N, Gao C, et al.
    J Ethnopharmacol, 2020 May 10;253:112663.
    PMID: 32045682 DOI: 10.1016/j.jep.2020.112663
    ETHNOPHARMACOLOGICAL RELEVANCE: Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing) is traditionally used as a folk medicine for the treatments of inflammation, high fever, hepatitis and cancer, and can improve the immune function of the patient. It belongs to the family of Vitaceae, and is mainly distributed in southeast China (Yunnan province) and can be found in India (Andaman Islands), Myanmar, Thailand, Vietnam, Malaysia and Indonesia in the valleys with 1100-1300 m above the sea level.

    AIM OF THE STUDY: The present study aimed to characterize the chemical properties of a purified polysaccharide extracted from the aerial part of Tetrastigma hemsleyanum (SYQP) and investigate its antipyretic and antitumor effects in mice models.

    MATERIALS AND METHODS: Water-soluble crude polysaccharides from the aerial parts of Tetrastigma hemsleyanum were extracted and fractionated by DEAE and gel permeation chromatography. Homogeneity, molecular weight, monosaccharide composition, and FTIR analysis were performed to characterize the SYQP. Antipyretic effect of SYQP was examined using Brewer's yeast induced hyperthermia test. Antitumor effect was investigated using H22 tumor bearing mice. The serum cytokines were determined to evaluated the biological activities of SYQP.

    RESULTS: SYQP was composed of galacturonic acid (GalA), glucose (Glc), mannose (Man), arabinose (Ara), galactose (Gal), and rhamnose (Rha) with a molar ratio of 11.3:7.1:2.5:1.0:0.9:0.5 and it had an average molecular weight of 66.2 kDa. The oral administration of SYQP at 200 and 400 mg/kg could markedly suppress the hyperthermia of mice induced by Brewer's yeast and decrease the production of cytokines especially prostaglandin E2 (PGE2) in the serum of mice. SYQP inhibited the growth of H22 tumor in mice with inhibitory rate of 39.9% at the administration dose of 200 mg/kg and increased the production of cytokines such as tumor necrosis factor-alpha (TNF-a) and interferon γ (IFN-γ). Experimental results showed that the preventive administration of SYQP before lipopolysaccharide (LPS) reduced the high cytokine levels such as IL-6, IL-10 and IFN-γ, indicating that SYQP might act as a competitor with LPS to interact with toll like receptor 4 (TLR4), which further regulated the secretion of cytokines.

    CONCLUSION: The anti-inflammatory and antitumor activities of SYQP might be related to its regulation of host immune function by controlling the secretion of cytokines.

  4. Lai D, Zhou F, Zhou A, Hamzah SS, Zhang Y, Hu J, et al.
    Carbohydr Polym, 2022 Apr 15;282:119112.
    PMID: 35123747 DOI: 10.1016/j.carbpol.2022.119112
    In this study, a biodegradable photodynamic antibacterial film (Car-Cur) was prepared using casting method with κ-Carrageenan (κ-Car) as film-forming substrate and curcumin-β-cyclodextrin (Cur-β-CD) complex as photosensitizer. The comprehensive performance of this Car-Cur film was investigated. The obtained results showed that the concentration of Cur-β-CD was an important factor determining the properties of film including tensile strength (TS) elongation at break (EB), water vapor permeability (WVP), water content (WC) and thermal stability. When the concentration of Cur-β-CD is 1%, the film demonstrated the maximum TS and EB, increased thermal stability, with desirable WVP and WC. Furthermore, this film also showed good photodynamic antibacterial potential against Staphylococcus aureus and Escherichia coli upon irradiation of blue LED light. Moreover, the film can be degraded in the soil in one week. In conclusion, our results suggested Car-Cur photodynamic film could be developed as biodegradable antimicrobial packaging material for food preservation.
  5. Zhou F, Lin S, Zhang J, Kong Z, Tan BK, Hamzah SS, et al.
    Photodiagnosis Photodyn Ther, 2021 Dec 08;37:102677.
    PMID: 34890782 DOI: 10.1016/j.pdpdt.2021.102677
    BACKGROUND: Pseudomonas aeruginosa (P. aeruginosa) is an emerging opportunistic pathogen, which can cause bacterial skin diseases such as green nail syndrome, interdigital infections and folliculitis. Curcumin-mediated antimicrobial photodynamic therapy (aPDT) has been demonstrated as a promising therapeutic option for the treatment of skin infection though its inactivation of gram-negative bacteria such as P. aeruginosa.

    MATERIALS AND METHODS: In the present study, we examined the adjuvant effect of polymyxin B on the antibacterial activity of curcumin-mediated aPDT against P. aeruginosa. P. aeruginosa was treated with curcumin in the presence of 0.1-0.5 mg/L polymyxin B and irradiated by blue LED light (10 J/cm2). Bacterial cultures treated with curcumin alone served as controls. Colony forming units (CFU) were counted and the viability of P. aeruginosa was calculated after aPDT treatment. The possible underlying mechanisms for the enhanced killing effects were also explored.

    RESULTS: The killing effects of curcumin-mediated aPDT against P. aeruginosa was significantly enhanced by polymyxin B (over 2-log reductions). Moreover, it was also observed that addition of polymyxin B in the curcumin-mediated aPDT led to the apparent bacterial membrane damage with increased leakage of cytoplasmic contents and extensive DNA and protein degradation.

    DISCUSSION: The photodynamic action of curcumin against P. aeruginosa could be significantly enhanced by the FDA-approved drug polymyxin B. Our results highlight the potential of introducing polymyxin B to enhance the effects of aPDT treatment against gram-negative skin infections, in particular, P. aeruginosa.

  6. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
  7. Cui J, Zhou F, Gao M, Zhang L, Zhang L, Du K, et al.
    Environ Pollut, 2018 Oct;241:810-820.
    PMID: 29909307 DOI: 10.1016/j.envpol.2018.06.028
    Six different approaches are applied in the present study to apportion the sources of precipitation nitrogen making use of precipitation data of dissolved inorganic nitrogen (DIN, including NO3- and NH4+), dissolved organic nitrogen (DON) and δ15N signatures of DIN collected at six sampling sites in the mountain region of Southwest China. These approaches include one quantitative approach running a Bayesian isotope mixing model (SIAR model) and five qualitative approaches based on in-situ survey (ISS), ratio of NH4+/NO3- (RN), principal component analysis (PCA), canonical-correlation analysis (CCA) and stable isotope approach (SIA). Biomass burning, coal combustion and mobile exhausts in the mountain region are identified as major sources for precipitation DIN while biomass burning and volatilization sources such as animal husbandries are major ones for DON. SIAR model results suggest that mobile exhausts, biomass burning and coal combustion contributed 25.1 ± 14.0%, 26.0 ± 14.1% and 27.0 ± 12.6%, respectively, to NO3- on the regional scale. Higher contributions of both biomass burning and coal combustion appeared at rural and urban sites with a significant difference between Houba (rural) and the wetland site (p 
  8. Wang W, Zhou F, Chang Y, Cui J, He D, Du J, et al.
    Bull Environ Contam Toxicol, 2020 Mar;104(3):380-385.
    PMID: 31932904 DOI: 10.1007/s00128-020-02786-0
    In this study, three soil amendments (inorganic, liming, or organic-inorganic materials) were used in a Cd-contaminated purple field soil to investigate their impacts on soil Cd availability, enzyme (urease, catalase, sucrase, and acid phosphatase) activities, microbial biomass (carbon/nitrogen) and type (bacteria, fungi, and actinomycetes) in mustard and corn trials. Results showed that soil amendments generally decreased soil exchangeable Cd, fungi and bacterial populations while increasing the activities of all the four soil enzymes tested, microbial biomass carbon and populations of actinomycetes (p  0.05) whereas stronger effects appeared in soil organic matter and available nutrients (nitrogen, phosphorous and potassium; p 
  9. Ye D, Huang Y, Zhou F, Xie K, Matveev V, Li C, et al.
    Asian J Urol, 2017 Apr;4(2):75-85.
    PMID: 29264210 DOI: 10.1016/j.ajur.2017.01.002
    Objective: This double-blind, placebo-controlled phase 3 study was designed to compare efficacy and safety of abiraterone acetate + prednisone (abiraterone) to prednisone alone in chemotherapy-naïve, asymptomatic or mildly symptomatic metastatic castration-resistant prostate cancer (mCRPC) patients from China, Malaysia, Thailand and Russia.

    Methods: Adult chemotherapy-naïve patients with confirmed prostate adenocarcinoma, Eastern Cooperative Oncology Group (ECOG) performance status (PS) grade 0-1, ongoing androgen deprivation (serum testosterone <50 ng/dL) with prostate specific antigen (PSA) or radiographic progression were randomized to receive abiraterone acetate (1000 mg, QD) + prednisone (5 mg, BID) or placebo + prednisone (5 mg, BID), until disease progression, unacceptable toxicity or consent withdrawal. Primary endpoint was improvements in time to PSA progression (TTPP).

    Results: Totally, 313 patients were randomized (abiraterone: n = 157; prednisone: n = 156); and baseline characteristics were balanced. At clinical cut-off (median follow-up time: 3.9 months), 80% patients received treatment (abiraterone: n = 138, prednisone: n = 112). Median time to PSA progression was not reached with abiraterone versus 3.8 months for prednisone, attaining 58% reduction in PSA progression risk (HR = 0.418; p 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links