Displaying all 5 publications

Abstract:
Sort:
  1. Moo EK, Osman NA, Pingguan-Murphy B, Abas WA, Spence WD, Solomonidis SE
    Acta Bioeng Biomech, 2009;11(4):37-43.
    PMID: 20405814
    Conventionally, patellar tendon-bearing (PTB) sockets, which need high dexterity of prosthetist, are widely used. Lack of chartered and experienced prosthetist has often led to painful experience of wearing prosthesis and this will in turn deter the patients to wear the prosthesis, which will further aggravate stump shrinkage. Thus, the hydrostatic socket which demands relatively lower level of fabricating skill is proposed to replace the PTB socket in order to produce the equivalent, if not better, quality of support to the amputee patients. Both sockets' pressure profiles are studied and compared using finite element analysis (FEA) software. Three-dimensional models of both sockets were developed using MIMICS software. The analysis results showed that hydrostatic socket did exhibit more uniform pressure profiles than that of PTB socket. PTB socket showed pressure concentration near the proximal brim of the socket and also at the distal fibula. It was also found that the pressure magnitude in hydrostatic socket is relatively lower than that of PTB socket.
  2. Fazreena Othman N, Salleh Basaruddin K, Hanafi Mat Som M, Shukry Abdul Majid M, Razak Sulaiman A
    Acta Bioeng Biomech, 2019;21(1):55-62.
    PMID: 31197285
    PURPOSE: The aim of this study was to examine the joint contact forces (JCF) between each limb as the LLD magnitude increases during walking activity.

    METHODS: Eighteen male healthy subjects volunteered to participate in the experiment. Walking gait analysis was conducted with eight different levels of insole to simulate the LLD, starting from 0 cm until 4.0 cm with 0.5 cm increment. Qualisys Track Manager System and C-motion Visual 3D biomechanical tools were used to analyse the results. Four joints (ankle, knee, hip, and pelvis) of lower limb of two legs were investigated. The increment of insoles was placed on the right leg to represent the long leg.

    RESULTS: The results suggest that the mean contact forces for all joints in the short leg were increased as the increment level increased. On the contrary, the mean contact forces in the long leg decreased when the LLD level increased. Among these four joints, JCF in hip shows a positive increment based on the ASI value. Means that hip shows the most affected joint as the LLD level increase.

    CONCLUSIONS: The result obtained in this study might help clinicians treat patients with a structural LLD for treatment plan including surgical intervention.

  3. Hamzah NA, Razak NAA, Karim MSA, Salleh SZ
    Acta Bioeng Biomech, 2021;23(4):173-182.
    PMID: 37341100
    PURPOSE: This study aimed to examine the accuracy and validity of the Biosculptor's Bioscanner shape capturing system as a portable measuring device by analysing the changes in transtibial residual limb circumference parameters while walking. Assessment on an amputee could also allow for the clinical usability of the digital scanner to be studied.

    METHODS: To verify the accuracy of the system, the Bioscanner method was compared to the widely used standard anthropometric manual measurement technique (i.e., tape measure). One transtibial prosthetic user was recruited to conduct a walking activity at a normal walking pace for 5 to 15 minutes. Circumferential profiles of the participant were obtained digitally and manually during 2-5 minutes of resting walking intervals. The mean differences between the two methods were compared and percentage differences were calculated. The means were used to calculate the standard error measurement (SEM) and the 95% confidence intervals. Study of the limit of agreement between the two method was also used to validate the accuracy of Bioscanner.

    RESULTS: The findings showed that both measurements gave a general comparable linear pattern. The averaged results from both methods resulted in only small distinctive differences especially at circumference near the mid-patella tendon. Similarly, the pressure-sensitive areas of the limb resulted in only an average of 2.28% differences between the two measurement techniques. The system showed high reliability and SEM with <1 of 95% CI values and repeatability study gave ICC >0.9.

    CONCLUSIONS: Bioscanner appeared to be comparable with the standard manual method. The Biosculptor system provides the portability, fast, reliable, and high accuracy measurements of the transtibial residual limb circumference, thus, it can be considered as a valuable tool for daily measurement of amputee's residual limb and pre-prosthetic training.

  4. Ishak MI, Daud R, Noor SNFM, Khor CY, Roslan H
    Acta Bioeng Biomech, 2022;24(3):147-159.
    PMID: 38314490
    PURPOSE: The aim of this study was to evaluate the mechanical stimuli transfer at the bone-implant interface via stress and strain energy density transfer parameters. This study also aimed to investigate the effect of different implant stiffness and parafunctional loading values on the defined mechanical stimuli transfer from the implant to the surrounding bone.

    METHODS: A three-dimensional finite element model of two-piece threaded dental implant with internal hexagonal connection and mandibular bone block was constructed. Response surface method through face-centred central composite design was applied to examine the influence of two independent factors variables using three levels. The analysis model was fitted to a second-order polynomial equation to determine the response values.

    RESULTS: The results showed that the implant stiffness was more effective than the horizontal load value in increasing the stress and strain energy density transfers. The interaction between both factors was significant in decreasing the likelihood of bone resorption. Decreasing the implant stiffness and horizontal load value led to the increased stress transfer and unexpected decrease in the strain energy density, except at the minimum level of the horizontal load. The increase in the implant stiffness and horizontal load value (up to medium level) have increased the strain energy transfer to the bone.

    CONCLUSIONS: The stress and strain energy density were transferred distinctively at the bone-implant interface. The role of both implant stiffness and parafunctional loading is important and should be highlighted in the preoperative treatment planning and design of dental implant.

  5. Yamin NAAA, Basaruddin KS, Bakar SA, Salleh AF, Som MHM, Bakar AHA
    Acta Bioeng Biomech, 2022;24(1):67-74.
    PMID: 38314464
    PURPOSE: The present study aims to investigate the effect of incline and decline walking on ground and joint reaction forces (JRF) of lower extremity and plantar fascia strain (PFS) under certain surface inclination angles.

    METHODS: Twenty-three male subjects walked on a customized platform with four different surface inclinations (i.e., 0, 5, 7.5 and 10°) with inclined and declined directions. The motion of the ten reflective markers was captured using Qualysis motion capture system (Qualysis, Gothenburg, Sweden) and exported to a visual three-dimensional (3D) software (C-motion, Germantown, USA) in order to analyze the GRF, JRF and PFS.

    RESULTS: The results found that the peak vertical GRF is almost consistent for 0 and 5° inclination slope but started to decrease at 7.5° onwards during decline walking. The most affected JRF was found on knee at medial-lateral direction even as low as 5 to 10° inclination for both walking conditions. Furthermore, the findings also show that the JRF of lower extremity was more affected during declined walking compared to inclined walking based on the number of significant differences observed in each inclination angle. The PFS was found increased with the increase of surface inclination.

    CONCLUSIONS: The findings could provide a new insight on the relationship of joint reaction forces and strain parameter in response to the incline and decline walking. It would benefit in providing a better precaution that should be considered during hiking activity, especially in medial-lateral direction in order to prevent injury or fall risk.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links