Displaying all 2 publications

Abstract:
Sort:
  1. Loke P, Lim YAL
    Cell Host Microbe, 2016 10 12;20(4):417-419.
    PMID: 27736641 DOI: 10.1016/j.chom.2016.09.016
    Gut commensals profoundly affect host immunity and intestinal homeostasis, but the impact of commensal eukaryotic protozoans is poorly understood. In a recent Cell paper, Chudnovskiy et al. (2016) identify a commensal protozoan, Tritrichomonas musculis, that can enhance anti-bacterial defenses, but at the cost of increasing intestinal inflammation.
  2. Chen RE, Smith BK, Errico JM, Gordon DN, Winkler ES, VanBlargan LA, et al.
    Cell Host Microbe, 2021 Nov 10;29(11):1634-1648.e5.
    PMID: 34610295 DOI: 10.1016/j.chom.2021.09.006
    Although divergent dengue viruses (DENVs) have been isolated in insects, nonhuman primates, and humans, their relationships to the four canonical serotypes (DENV 1-4) are poorly understood. One virus isolated from a dengue patient, DKE-121, falls between genotype and serotype levels of sequence divergence to DENV-4. To examine its antigenic relationship to DENV-4, we assessed serum neutralizing and protective activity. Whereas DENV-4-immune mouse sera neutralize DKE-121 infection, DKE-121-immune sera inhibit DENV-4 less efficiently. Passive transfer of DENV-4 or DKE-121-immune sera protects mice against homologous, but not heterologous, DENV-4 or DKE-121 challenge. Antigenic cartography suggests that DENV-4 and DKE-121 are related but antigenically distinct. However, DENV-4 vaccination confers protection against DKE-121 in nonhuman primates, and serum from humans immunized with a tetravalent vaccine neutralize DENV-4 and DKE-121 infection equivalently. As divergent DENV strains, such as DKE-121, may meet criteria for serotype distinction, monitoring their capacity to impact dengue disease and vaccine efficacy appears warranted.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links