Displaying all 2 publications

Abstract:
Sort:
  1. Umpleby AM, Shojaee-Moradie F, Fielding B, Li X, Marino A, Alsini N, et al.
    Clin Sci (Lond), 2017 Nov 01;131(21):2561-2573.
    PMID: 28923880 DOI: 10.1042/CS20171208
    Dietary sugars are linked to the development of non-alcoholic fatty liver disease (NAFLD) and dyslipidaemia, but it is unknown if NAFLD itself influences the effects of sugars on plasma lipoproteins. To study this further, men with NAFLD (n = 11) and low liver fat 'controls' (n = 14) were fed two iso-energetic diets, high or low in sugars (26% or 6% total energy) for 12 weeks, in a randomised, cross-over design. Fasting plasma lipid and lipoprotein kinetics were measured after each diet by stable isotope trace-labelling.There were significant differences in the production and catabolic rates of VLDL subclasses between men with NAFLD and controls, in response to the high and low sugar diets. Men with NAFLD had higher plasma concentrations of VLDL1-triacylglycerol (TAG) after the high (P<0.02) and low sugar (P<0.0002) diets, a lower VLDL1-TAG fractional catabolic rate after the high sugar diet (P<0.01), and a higher VLDL1-TAG production rate after the low sugar diet (P<0.01), relative to controls. An effect of the high sugar diet, was to channel hepatic TAG into a higher production of VLDL1-TAG (P<0.02) in the controls, but in contrast, a higher production of VLDL2-TAG (P<0.05) in NAFLD. These dietary effects on VLDL subclass kinetics could be explained, in part, by differences in the contribution of fatty acids from intra-hepatic stores, and de novo lipogenesis. The present study provides new evidence that liver fat accumulation leads to a differential partitioning of hepatic TAG into large and small VLDL subclasses, in response to high and low intakes of sugars.
  2. Hong J, Kumar S
    Clin Sci (Lond), 2023 Apr 26;137(8):579-595.
    PMID: 37075762 DOI: 10.1042/CS20220300
    Fetal growth restriction (FGR) leading to low birth weight (LBW) is a major cause of neonatal morbidity and mortality worldwide. Normal placental development involves a series of highly regulated processes involving a multitude of hormones, transcription factors, and cell lineages. Failure to achieve this leads to placental dysfunction and related placental diseases such as pre-clampsia and FGR. Early recognition of at-risk pregnancies is important because careful maternal and fetal surveillance can potentially prevent adverse maternal and perinatal outcomes by judicious pregnancy surveillance and careful timing of birth. Given the association between a variety of circulating maternal biomarkers, adverse pregnancy, and perinatal outcomes, screening tests based on these biomarkers, incorporating maternal characteristics, fetal biophysical or circulatory variables have been developed. However, their clinical utility has yet to be proven. Of the current biomarkers, placental growth factor and soluble fms-like tyrosine kinase 1 appear to have the most promise for placental dysfunction and predictive utility for FGR.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links