Displaying all 4 publications

Abstract:
Sort:
  1. Albahri AS, Alnoor A, Zaidan AA, Albahri OS, Hameed H, Zaidan BB, et al.
    Complex Intell Systems, 2022;8(2):1781-1801.
    PMID: 34777975 DOI: 10.1007/s40747-021-00503-w
    Topical treatments with structural equation modelling (SEM) and an artificial neural network (ANN), including a wide range of concepts, benefits, challenges and anxieties, have emerged in various fields and are becoming increasingly important. Although SEM can determine relationships amongst unobserved constructs (i.e. independent, mediator, moderator, control and dependent variables), it is insufficient for providing non-compensatory relationships amongst constructs. In contrast with previous studies, a newly proposed methodology that involves a dual-stage analysis of SEM and ANN was performed to provide linear and non-compensatory relationships amongst constructs. Consequently, numerous distinct types of studies in diverse sectors have conducted hybrid SEM-ANN analysis. Accordingly, the current work supplements the academic literature with a systematic review that includes all major SEM-ANN techniques used in 11 industries published in the past 6 years. This study presents a state-of-the-art SEM-ANN classification taxonomy based on industries and compares the effort in various domains to that classification. To achieve this objective, we examined the Web of Science, ScienceDirect, Scopus and IEEE Xplore ® databases to retrieve 239 articles from 2016 to 2021. The obtained articles were filtered on the basis of inclusion criteria, and 60 studies were selected and classified under 11 categories. This multi-field systematic study uncovered new research possibilities, motivations, challenges, limitations and recommendations that must be addressed for the synergistic integration of multidisciplinary studies. It contributed two points of potential future work resulting from the developed taxonomy. First, the importance of the determinants of play, musical and art therapy adoption amongst autistic children within the healthcare sector is the most important consideration for future investigations. In this context, the second potential future work can use SEM-ANN to determine the barriers to adopting sensing-enhanced therapy amongst autistic children to satisfy the recommendations provided by the healthcare sector. The analysis indicates that the manufacturing and technology sectors have conducted the most number of investigations, whereas the construction and small- and medium-sized enterprise sectors have conducted the least. This study will provide a helpful reference to academics and practitioners by providing guidance and insightful knowledge for future studies.
  2. Kulathilake KASH, Abdullah NA, Sabri AQM, Lai KW
    Complex Intell Systems, 2023;9(3):2713-2745.
    PMID: 34777967 DOI: 10.1007/s40747-021-00405-x
    Computed Tomography (CT) is a widely use medical image modality in clinical medicine, because it produces excellent visualizations of fine structural details of the human body. In clinical procedures, it is desirable to acquire CT scans by minimizing the X-ray flux to prevent patients from being exposed to high radiation. However, these Low-Dose CT (LDCT) scanning protocols compromise the signal-to-noise ratio of the CT images because of noise and artifacts over the image space. Thus, various restoration methods have been published over the past 3 decades to produce high-quality CT images from these LDCT images. More recently, as opposed to conventional LDCT restoration methods, Deep Learning (DL)-based LDCT restoration approaches have been rather common due to their characteristics of being data-driven, high-performance, and fast execution. Thus, this study aims to elaborate on the role of DL techniques in LDCT restoration and critically review the applications of DL-based approaches for LDCT restoration. To achieve this aim, different aspects of DL-based LDCT restoration applications were analyzed. These include DL architectures, performance gains, functional requirements, and the diversity of objective functions. The outcome of the study highlights the existing limitations and future directions for DL-based LDCT restoration. To the best of our knowledge, there have been no previous reviews, which specifically address this topic.
  3. Zhou Y, Cheng J, Wu C, Teo KL
    PMID: 36855682 DOI: 10.1007/s40747-023-00976-x
    The problem of blood transshipment and allocation in the context of the COVID-19 epidemic has many new characteristics, such as two-stage, trans-regional, and multi-modal transportation. Considering these new characteristics, we propose a novel multi-objective optimization model for the two-stage emergent blood transshipment-allocation. The objectives considered are to optimize the quality of transshipped blood, the satisfaction of blood demand, and the overall cost including shortage penalty. An improved integer encoded hybrid multi-objective whale optimization algorithm (MOWOA) with greedy rules is then designed to solve the model. Numerical experiments demonstrate that our two-stage model is superior to one-stage optimization methods on all objectives. The degree of improvement ranges from 0.69 to 66.26%.
  4. Alamoodi AH, Zaidan BB, Albahri OS, Garfan S, Ahmaro IYY, Mohammed RT, et al.
    PMID: 36777815 DOI: 10.1007/s40747-023-00972-1
    When COVID-19 spread in China in December 2019, thousands of studies have focused on this pandemic. Each presents a unique perspective that reflects the pandemic's main scientific disciplines. For example, social scientists are concerned with reducing the psychological impact on the human mental state especially during lockdown periods. Computer scientists focus on establishing fast and accurate computerized tools to assist in diagnosing, preventing, and recovering from the disease. Medical scientists and doctors, or the frontliners, are the main heroes who received, treated, and worked with the millions of cases at the expense of their own health. Some of them have continued to work even at the expense of their lives. All these studies enforce the multidisciplinary work where scientists from different academic disciplines (social, environmental, technological, etc.) join forces to produce research for beneficial outcomes during the crisis. One of the many branches is computer science along with its various technologies, including artificial intelligence, Internet of Things, big data, decision support systems (DSS), and many more. Among the most notable DSS utilization is those related to multicriterion decision making (MCDM), which is applied in various applications and across many contexts, including business, social, technological and medical. Owing to its importance in developing proper decision regimens and prevention strategies with precise judgment, it is deemed a noteworthy topic of extensive exploration, especially in the context of COVID-19-related medical applications. The present study is a comprehensive review of COVID-19-related medical case studies with MCDM using a systematic review protocol. PRISMA methodology is utilized to obtain a final set of (n = 35) articles from four major scientific databases (ScienceDirect, IEEE Xplore, Scopus, and Web of Science). The final set of articles is categorized into taxonomy comprising five groups: (1) diagnosis (n = 6), (2) safety (n = 11), (3) hospital (n = 8), (4) treatment (n = 4), and (5) review (n = 3). A bibliographic analysis is also presented on the basis of annual scientific production, country scientific production, co-occurrence, and co-authorship. A comprehensive discussion is also presented to discuss the main challenges, motivations, and recommendations in using MCDM research in COVID-19-related medial case studies. Lastly, we identify critical research gaps with their corresponding solutions and detailed methodologies to serve as a guide for future directions. In conclusion, MCDM can be utilized in the medical field effectively to optimize the resources and make the best choices particularly during pandemics and natural disasters.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links