Displaying all 9 publications

Abstract:
Sort:
  1. Noor NM, Yunus A, Bakar SA, Hussin A, Rijal OM
    Comput Med Imaging Graph, 2011 Apr;35(3):186-94.
    PMID: 21036539 DOI: 10.1016/j.compmedimag.2010.10.002
    This paper investigates a novel statistical discrimination procedure to detect PTB when the gold standard requirement is taken into consideration. Archived data were used to establish two groups of patients which are the control and test group. The control group was used to develop the statistical discrimination procedure using four vectors of wavelet coefficients as feature vectors for the detection of pulmonary tuberculosis (PTB), lung cancer (LC), and normal lung (NL). This discrimination procedure was investigated using the test group where the number of sputum positive and sputum negative cases that were correctly classified as PTB cases were noted. The proposed statistical discrimination method is able to detect PTB patients and LC with high true positive fraction. The method is also able to detect PTB patients that are sputum negative and therefore may be used as a complement to the gold standard.
  2. Noor NM, Rijal OM, Yunus A, Abu-Bakar SA
    Comput Med Imaging Graph, 2010 Mar;34(2):160-6.
    PMID: 19758785 DOI: 10.1016/j.compmedimag.2009.08.005
    This paper presents a statistical method for the detection of lobar pneumonia when using digitized chest X-ray films. Each region of interest was represented by a vector of wavelet texture measures which is then multiplied by the orthogonal matrix Q(2). The first two elements of the transformed vectors were shown to have a bivariate normal distribution. Misclassification probabilities were estimated using probability ellipsoids and discriminant functions. The result of this study recommends the detection of pneumonia by constructing probability ellipsoids or discriminant function using maximum energy and maximum column sum energy texture measures where misclassification probabilities were less than 0.15.
  3. Eltoukhy MM, Faye I, Samir BB
    Comput Med Imaging Graph, 2010 Jun;34(4):269-76.
    PMID: 20004076 DOI: 10.1016/j.compmedimag.2009.11.002
    This paper presents an approach for breast cancer diagnosis in digital mammogram using curvelet transform. After decomposing the mammogram images in curvelet basis, a special set of the biggest coefficients is extracted as feature vector. The Euclidean distance is then used to construct a supervised classifier. The experimental results gave a 98.59% classification accuracy rate, which indicate that curvelet transformation is a promising tool for analysis and classification of digital mammograms.
  4. Muniandy SV, Stanslas J
    Comput Med Imaging Graph, 2008 Oct;32(7):631-7.
    PMID: 18707844 DOI: 10.1016/j.compmedimag.2008.07.003
    Chromatin morphologies in human breast cancer cells treated with an anti-cancer agent are analyzed at their early stage of programmed cell death or apoptosis. The gray-level images of nuclear chromatin are modelled as random fields. We used two-dimensional isotropic generalized Cauchy field to characterize local self-similarity and global long-range dependence behaviors in the image spatial data. Generalized Cauchy field allows the description of fractal behavior inferred from fractal dimension and the long-range dependence inferred from correlation exponent to be carried out independently. We demonstrated the usefulness of locally self-similar random fields with long-range dependence for modelling chromatin condensation.
  5. Nayak DR, Dash R, Majhi B, Acharya UR
    Comput Med Imaging Graph, 2019 10;77:101656.
    PMID: 31563069 DOI: 10.1016/j.compmedimag.2019.101656
    Binary classification of brain magnetic resonance (MR) images has made remarkable progress and many automated systems have been developed in the last decade. Multiclass classification of brain MR images is comparatively more challenging and has great clinical significance. Hence, it has recently become an active area of research in biomedical image processing. In this paper, an automated multiclass brain MR classification framework is proposed to categorize the MR images into five classes such as brain stroke, degenerative disease, infectious disease, brain tumor, and normal brain. A texture based feature descriptor is proposed using curvelet transform and Tsallis entropy to extract salient features from MR images. The potential of Tsallis entropy features is compared with Shannon entropy features. A kernel extension of random vector functional link network (KRVFL) is used to perform multiclass classification and improve the generalization performance at faster training speed. To validate the proposed method, two standard multiclass brain MR datasets (MD-1 and MD-2) are used. The proposed system obtained classification accuracies of 97.33% and 94.00% for MD-1 and MD-2 datasets respectively using 5-fold cross validation approach. The experimental results demonstrated the effectiveness of our system compared to the state-of-the-art schemes and hence, can be utilized as a supportive tool by physicians to verify their screening.
  6. Ting FF, Sim KS, Lim CP
    Comput Med Imaging Graph, 2018 11;69:82-95.
    PMID: 30219737 DOI: 10.1016/j.compmedimag.2018.08.011
    Computed Tomography (CT) images are widely used for the identification of abnormal brain tissues following infarct and hemorrhage of a stroke. The treatment of this medical condition mainly depends on doctors' experience. While manual lesion delineation by medical doctors is currently considered as the standard approach, it is time-consuming and dependent on each doctor's expertise and experience. In this study, a case-control comparison brain lesion segmentation (CCBLS) method is proposed to segment the region pertaining to brain injury by comparing the voxel intensity of CT images between control subjects and stroke patients. The method is able to segment the brain lesion from the stacked CT images automatically without prior knowledge of the location or the presence of the lesion. The aim is to reduce medical doctors' burden and assist them in making an accurate diagnosis. A case study with 300 sets of CT images from control subjects and stroke patients is conducted. Comparing with other existing methods, the outcome ascertains the effectiveness of the proposed method in detecting brain infarct of stroke patients.
  7. Murtaza G, Abdul Wahab AW, Raza G, Shuib L
    Comput Med Imaging Graph, 2021 04;89:101870.
    PMID: 33545489 DOI: 10.1016/j.compmedimag.2021.101870
    Worldwide, the burden of cancer is drastically increasing over the past few years. Among all types of cancers in women, breast cancer (BrC) is the main cause of unnatural deaths. For early diagnosis, histopathology (Hp) imaging is a gold standard for positive and detailed (at tissue level) diagnosis of breast tumor (BrT) compared to mammogram images. A large number of studies used BrT Hp images to solve binary or multiclassification problems using high computational resources. However, classification models' performance may be compromised due to the high correlation among various types of BrT in Hp images, which raises the misclassification rate. Thus, this paper aims to develop a tree-based BrT multiclassification model via deep learning (DL) to extract discriminative features to solve the multiclassification problem with better performance using less computational resources. The main contributions of this work are to create an ensemble, tree-based DL model that is pre-trained on the BreakHis dataset, and implementation of a misclassification reduction algorithm. The ensemble, tree-based DL model, extracts discriminative BrT features from Hp images. The target dataset (i.e., Bioimaging challenge 2015 breast histology) is small in size; thus, to avoid overfitting of the proposed model, pretraining is performed on the BreakHis dataset. Whereas, misclassification reduction algorithm is implemented to enhance the performance of the classification model. The experimental results show that the proposed model outperformed the existing state-of-the-art baseline studies. The achieved classification accuracy is ranging from 87.50 % to 100 % for four subtypes of BrT. Thus, the proposed model can assist doctors as the second opinion in any healthcare centre.
  8. Li J, Liu LS, Fong S, Wong RK, Mohammed S, Fiaidhi J, et al.
    PMID: 27236411 DOI: 10.1016/j.compmedimag.2016.05.001
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
  9. Li J, Fong S, Siu S, Mohammed S, Fiaidhi J, Wong KK
    PMID: 27717712 DOI: 10.1016/j.compmedimag.2016.08.004
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links