Displaying all 19 publications

Abstract:
Sort:
  1. Ralib AM, Pickering JW, Shaw GM, Than MP, George PM, Endre ZH
    Crit Care, 2014;18(6):601.
    PMID: 25366893 DOI: 10.1186/s13054-014-0601-2
    INTRODUCTION: Acute Kidney Injury (AKI) biomarker utility depends on sample timing after the onset of renal injury. We compared biomarker performance on arrival in the emergency department (ED) with subsequent performance in the intensive care unit (ICU).
    METHODS: Urinary and plasma Neutrophil Gelatinase-Associated Lipocalin (NGAL), and urinary Cystatin C (CysC), alkaline phosphatase, γ-Glutamyl Transpeptidase (GGT), α- and π-Glutathione S-Transferase (GST), and albumin were measured on ED presentation, and at 0, 4, 8, and 16 hours, and days 2, 4 and 7 in the ICU in patients after cardiac arrest, sustained or profound hypotension or ruptured abdominal aortic aneurysm. AKI was defined as plasma creatinine increase ≥ 26.5 μmol/l within 48 hours or ≥ 50% within 7 days.
    RESULTS: n total, 45 of 77 patients developed AKI. Most AKI patients had elevated urinary NGAL, and plasma NGAL and CysC in the period 6 to 24 hours post presentation. Biomarker performance in the ICU was similar or better than when measured earlier in the ED. Plasma NGAL diagnosed AKI at all sampling times, urinary NGAL, plasma and urinary CysC up to 48 hours, GGT 4 to 12 hours, and π-GST 8 to 12 hours post insult. Thirty-one patients died or required dialysis. Peak 24-hour urinary NGAL and albumin independently predicted 30-day mortality and dialysis; odds ratios 2.87 (1.32 to 6.26), and 2.72 (1.14 to 6.48), respectively. Urinary NGAL improved risk prediction by 11% (IDI event of 0.06 (0.002 to 0.19) and IDI non-event of 0.04 (0.002 to 0.12)).
    CONCLUSION: Early measurement in the ED has utility, but not better AKI diagnostic performance than later ICU measurement. Plasma NGAL diagnosed AKI at all time points. Urinary NGAL best predicted mortality or dialysis compared to other biomarkers.
    TRIAL REGISTRATION: Australian and New Zealand Clinical Trials Registry ACTRN12610001012066. Registered 12 February 2010.
  2. Weiss SL, Fitzgerald JC, Maffei FA, Kane JM, Rodriguez-Nunez A, Hsing DD, et al.
    Crit Care, 2015;19:325.
    PMID: 26373923 DOI: 10.1186/s13054-015-1055-x
    Consensus criteria for pediatric severe sepsis have standardized enrollment for research studies. However, the extent to which critically ill children identified by consensus criteria reflect physician diagnosis of severe sepsis, which underlies external validity for pediatric sepsis research, is not known. We sought to determine the agreement between physician diagnosis and consensus criteria to identify pediatric patients with severe sepsis across a network of international pediatric intensive care units (PICUs).
  3. Chase JG, Chiew YS, Lambermont B, Morimont P, Shaw GM, Desaive T
    Crit Care, 2020 05 14;24(1):222.
    PMID: 32410701 DOI: 10.1186/s13054-020-02945-z
  4. Chase JG, Chiew YS, Lambermont B, Morimont P, Shaw GM, Desaive T
    Crit Care, 2020 07 10;24(1):415.
    PMID: 32650807 DOI: 10.1186/s13054-020-03152-6
  5. Lee ZY, Yap CSL, Hasan MS, Engkasan JP, Barakatun-Nisak MY, Day AG, et al.
    Crit Care, 2021 07 23;25(1):260.
    PMID: 34301303 DOI: 10.1186/s13054-021-03693-4
    BACKGROUND: The optimal protein dose in critical illness is unknown. We aim to conduct a systematic review of randomized controlled trials (RCTs) to compare the effect of higher versus lower protein delivery (with similar energy delivery between groups) on clinical and patient-centered outcomes in critically ill patients.

    METHODS: We searched MEDLINE, EMBASE, CENTRAL and CINAHL from database inception through April 1, 2021.We included RCTs of (1) adult (age ≥ 18) critically ill patients that (2) compared higher vs lower protein with (3) similar energy intake between groups, and (4) reported clinical and/or patient-centered outcomes. We excluded studies on immunonutrition. Two authors screened and conducted quality assessment independently and in duplicate. Random-effect meta-analyses were conducted to estimate the pooled risk ratio (dichotomized outcomes) or mean difference (continuous outcomes).

    RESULTS: Nineteen RCTs were included (n = 1731). Sixteen studies used primarily the enteral route to deliver protein. Intervention was started within 72 h of ICU admission in sixteen studies. The intervention lasted between 3 and 28 days. In 11 studies that reported weight-based nutrition delivery, the pooled mean protein and energy received in higher and lower protein groups were 1.31 ± 0.48 vs 0.90 ± 0.30 g/kg and 19.9 ± 6.9 versus 20.1 ± 7.1 kcal/kg, respectively. Higher vs lower protein did not significantly affect overall mortality [risk ratio 0.91, 95% confidence interval (CI) 0.75-1.10, p = 0.34] or other clinical or patient-centered outcomes. In 5 small studies, higher protein significantly attenuated muscle loss (MD -3.44% per week, 95% CI -4.99 to -1.90; p 

  6. Brenner A, Belli A, Chaudhri R, Coats T, Frimley L, Jamaluddin SF, et al.
    Crit Care, 2020 11 11;24(1):560.
    PMID: 33172504 DOI: 10.1186/s13054-020-03243-4
    BACKGROUND: The CRASH-3 trial hypothesised that timely tranexamic acid (TXA) treatment might reduce deaths from intracranial bleeding after traumatic brain injury (TBI). To explore the mechanism of action of TXA in TBI, we examined the timing of its effect on death.

    METHODS: The CRASH-3 trial randomised 9202 patients within 3 h of injury with a GCS score ≤ 12 or intracranial bleeding on CT scan and no significant extracranial bleeding to receive TXA or placebo. We conducted an exploratory analysis of the effects of TXA on all-cause mortality within 24 h of injury and within 28 days, excluding patients with a GCS score of 3 or bilateral unreactive pupils, stratified by severity and country income. We pool data from the CRASH-2 and CRASH-3 trials in a one-step fixed effects individual patient data meta-analysis.

    RESULTS: There were 7637 patients for analysis after excluding patients with a GCS score of 3 or bilateral unreactive pupils. Of 1112 deaths, 23.3% were within 24 h of injury (early deaths). The risk of early death was reduced with TXA (112 (2.9%) TXA group vs 147 (3.9%) placebo group; risk ratio [RR] RR 0.74, 95% CI 0.58-0.94). There was no evidence of heterogeneity by severity (p = 0.64) or country income (p = 0.68). The risk of death beyond 24 h of injury was similar in the TXA and placebo groups (432 (11.5%) TXA group vs 421 (11.7%) placebo group; RR 0.98, 95% CI 0.69-1.12). The risk of death at 28 days was 14.0% in the TXA group versus 15.1% in the placebo group (544 vs 568 events; RR 0.93, 95% CI 0.83-1.03). When the CRASH-2 and CRASH-3 trial data were pooled, TXA reduced early death (RR 0.78, 95% CI 0.70-0.87) and death within 28 days (RR 0.88, 95% CI 0.82-0.94).

    CONCLUSIONS: Tranexamic acid reduces early deaths in non-moribund TBI patients regardless of TBI severity or country income. The effect of tranexamic acid in patients with isolated TBI is similar to that in polytrauma. Treatment is safe and even severely injured patients appear to benefit when treated soon after injury.

    TRIAL REGISTRATION: ISRCTN15088122 , registered on 19 July 2011; NCT01402882 , registered on 26 July 2011.

  7. Stoppe C, Patel JJ, Zarbock A, Lee ZY, Rice TW, Mafrici B, et al.
    Crit Care, 2023 Oct 18;27(1):399.
    PMID: 37853490 DOI: 10.1186/s13054-023-04663-8
    BACKGROUND: Based on low-quality evidence, current nutrition guidelines recommend the delivery of high-dose protein in critically ill patients. The EFFORT Protein trial showed that higher protein dose is not associated with improved outcomes, whereas the effects in critically ill patients who developed acute kidney injury (AKI) need further evaluation. The overall aim is to evaluate the effects of high-dose protein in critically ill patients who developed different stages of AKI.

    METHODS: In this post hoc analysis of the EFFORT Protein trial, we investigated the effect of high versus usual protein dose (≥ 2.2 vs. ≤ 1.2 g/kg body weight/day) on time-to-discharge alive from the hospital (TTDA) and 60-day mortality and in different subgroups in critically ill patients with AKI as defined by the Kidney Disease Improving Global Outcomes (KDIGO) criteria within 7 days of ICU admission. The associations of protein dose with incidence and duration of kidney replacement therapy (KRT) were also investigated.

    RESULTS: Of the 1329 randomized patients, 312 developed AKI and were included in this analysis (163 in the high and 149 in the usual protein dose group). High protein was associated with a slower time-to-discharge alive from the hospital (TTDA) (hazard ratio 0.5, 95% CI 0.4-0.8) and higher 60-day mortality (relative risk 1.4 (95% CI 1.1-1.8). Effect modification was not statistically significant for any subgroup, and no subgroups suggested a beneficial effect of higher protein, although the harmful effect of higher protein target appeared to disappear in patients who received kidney replacement therapy (KRT). Protein dose was not significantly associated with the incidence of AKI and KRT or duration of KRT.

    CONCLUSIONS: In critically ill patients with AKI, high protein may be associated with worse outcomes in all AKI stages. Recommendation of higher protein dosing in AKI patients should be carefully re-evaluated to avoid potential harmful effects especially in patients who were not treated with KRT.

    TRIAL REGISTRATION: This study is registered at ClinicalTrials.gov (NCT03160547) on May 17th 2017.

  8. Notz Q, Lee ZY, Menger J, Elke G, Hill A, Kranke P, et al.
    Crit Care, 2022 01 19;26(1):23.
    PMID: 35045885 DOI: 10.1186/s13054-022-03896-3
    BACKGROUND: Parenteral lipid emulsions in critical care are traditionally based on soybean oil (SO) and rich in pro-inflammatory omega-6 fatty acids (FAs). Parenteral nutrition (PN) strategies with the aim of reducing omega-6 FAs may potentially decrease the morbidity and mortality in critically ill patients.

    METHODS: A systematic search of MEDLINE, EMBASE, CINAHL and CENTRAL was conducted to identify all randomized controlled trials in critically ill patients published from inception to June 2021, which investigated clinical omega-6 sparing effects. Two independent reviewers extracted bias risk, treatment details, patient characteristics and clinical outcomes. Random effect meta-analysis was performed.

    RESULTS: 1054 studies were identified in our electronic search, 136 trials were assessed for eligibility and 26 trials with 1733 critically ill patients were included. The median methodologic score was 9 out of 14 points (95% confidence interval [CI] 7, 10). Omega-6 FA sparing PN in comparison with traditional lipid emulsions did not decrease overall mortality (20 studies; risk ratio [RR] 0.91; 95% CI 0.76, 1.10; p = 0.34) but hospital length of stay was substantially reduced (6 studies; weighted mean difference [WMD] - 6.88; 95% CI - 11.27, - 2.49; p = 0.002). Among the different lipid emulsions, fish oil (FO) containing PN reduced the length of intensive care (8 studies; WMD - 3.53; 95% CI - 6.16, - 0.90; p = 0.009) and rate of infectious complications (4 studies; RR 0.65; 95% CI 0.44, 0.95; p = 0.03). When FO was administered as a stand-alone medication outside PN, potential mortality benefits were observed compared to standard care.

    CONCLUSION: Overall, these findings highlight distinctive omega-6 sparing effects attributed to PN. Among the different lipid emulsions, FO in combination with PN or as a stand-alone treatment may have the greatest clinical impact. Trial registration PROSPERO international prospective database of systematic reviews (CRD42021259238).

  9. Hussain A, Via G, Melniker L, Goffi A, Tavazzi G, Neri L, et al.
    Crit Care, 2020 12 24;24(1):702.
    PMID: 33357240 DOI: 10.1186/s13054-020-03369-5
    COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.
  10. Davies TW, Kelly E, van Gassel RJJ, van de Poll MCG, Gunst J, Casaer MP, et al.
    Crit Care, 2023 Nov 20;27(1):450.
    PMID: 37986015 DOI: 10.1186/s13054-023-04729-7
    BACKGROUND: CONCISE is an internationally agreed minimum set of outcomes for use in nutritional and metabolic clinical research in critically ill adults. Clinicians and researchers need to be aware of the clinimetric properties of these instruments and understand any limitations to ensure valid and reliable research. This systematic review and meta-analysis were undertaken to evaluate the clinimetric properties of the measurement instruments identified in CONCISE.

    METHODS: Four electronic databases were searched from inception to December 2022 (MEDLINE via Ovid, EMBASE via Ovid, CINAHL via Healthcare Databases Advanced Search, CENTRAL via Cochrane). Studies were included if they examined at least one clinimetric property of a CONCISE measurement instrument or recognised variation in adults ≥ 18 years with critical illness or recovering from critical illness in any language. The COnsensus-based Standards for the selection of health Measurement INstruments (COSMIN) checklist for systematic reviews of Patient-Reported Outcome Measures was used. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses were used in line with COSMIN guidance. The COSMIN checklist was used to evaluate the risk of bias and the quality of clinimetric properties. Overall certainty of the evidence was rated using a modified Grading of Recommendations, Assessment, Development and Evaluation approach. Narrative synthesis was performed and where possible, meta-analysis was conducted.

    RESULTS: A total of 4316 studies were screened. Forty-seven were included in the review, reporting data for 12308 participants. The Short Form-36 Questionnaire (Physical Component Score and Physical Functioning), sit-to-stand test, 6-m walk test and Barthel Index had the strongest clinimetric properties and certainty of evidence. The Short Physical Performance Battery, Katz Index and handgrip strength had less favourable results. There was limited data for Lawson Instrumental Activities of Daily Living and the Global Leadership Initiative on Malnutrition criteria. The risk of bias ranged from inadequate to very good. The certainty of the evidence ranged from very low to high.

    CONCLUSIONS: Variable evidence exists to support the clinimetric properties of the CONCISE measurement instruments. We suggest using this review alongside CONCISE to guide outcome selection for future trials of nutrition and metabolic interventions in critical illness.

    TRIAL REGISTRATION:  PROSPERO (CRD42023438187). Registered 21/06/2023.

  11. Wong JJ, Liu S, Dang H, Anantasit N, Phan PH, Phumeetham S, et al.
    Crit Care, 2020 01 31;24(1):31.
    PMID: 32005285 DOI: 10.1186/s13054-020-2741-x
    BACKGROUND: High-frequency oscillatory ventilation (HFOV) use was associated with greater mortality in adult acute respiratory distress syndrome (ARDS). Nevertheless, HFOV is still frequently used as rescue therapy in paediatric acute respiratory distress syndrome (PARDS). In view of the limited evidence for HFOV in PARDS and evidence demonstrating harm in adult patients with ARDS, we hypothesized that HFOV use compared to other modes of mechanical ventilation is associated with increased mortality in PARDS.

    METHODS: Patients with PARDS from 10 paediatric intensive care units across Asia from 2009 to 2015 were identified. Data on epidemiology and clinical outcomes were collected. Patients on HFOV were compared to patients on other modes of ventilation. The primary outcome was 28-day mortality and secondary outcomes were 28-day ventilator- (VFD) and intensive care unit- (IFD) free days. Genetic matching (GM) method was used to analyse the association between HFOV treatment with the primary outcome. Additionally, we performed a sensitivity analysis, including propensity score (PS) matching, inverse probability of treatment weighting (IPTW) and marginal structural modelling (MSM) to estimate the treatment effect.

    RESULTS: A total of 328 patients were included. In the first 7 days of PARDS, 122/328 (37.2%) patients were supported with HFOV. There were significant differences in baseline oxygenation index (OI) between the HFOV and non-HFOV groups (18.8 [12.0, 30.2] vs. 7.7 [5.1, 13.1] respectively; p 

  12. Reintam Blaser A, Mändul M, Björck M, Acosta S, Bala M, Bodnar Z, et al.
    Crit Care, 2024 Jan 23;28(1):32.
    PMID: 38263058 DOI: 10.1186/s13054-024-04807-4
    BACKGROUND: The aim of this multicentre prospective observational study was to identify the incidence, patient characteristics, diagnostic pathway, management and outcome of acute mesenteric ischaemia (AMI).

    METHODS: All adult patients with clinical suspicion of AMI admitted or transferred to 32 participating hospitals from 06.06.2022 to 05.04.2023 were included. Participants who were subsequently shown not to have AMI or had localized intestinal gangrene due to strangulating bowel obstruction had only baseline and outcome data collected.

    RESULTS: AMI occurred in 0.038% of adult admissions in participating acute care hospitals worldwide. From a total of 705 included patients, 418 patients had confirmed AMI. In 69% AMI was the primary reason for admission, while in 31% AMI occurred after having been admitted with another diagnosis. Median time from onset of symptoms to hospital admission in patients admitted due to AMI was 24 h (interquartile range 9-48h) and time from admission to diagnosis was 6h (1-12 h). Occlusive arterial AMI was diagnosed in 231 (55.3%), venous in 73 (17.5%), non-occlusive (NOMI) in 55 (13.2%), other type in 11 (2.6%) and the subtype could not be classified in 48 (11.5%) patients. Surgery was the initial management in 242 (58%) patients, of which 59 (24.4%) underwent revascularization. Endovascular revascularization alone was carried out in 54 (13%), conservative treatment in 76 (18%) and palliative care in 46 (11%) patients. From patients with occlusive arterial AMI, revascularization was undertaken in 104 (45%), with 40 (38%) of them in one site admitting selected patients. Overall in-hospital and 90-day mortality of AMI was 49% and 53.3%, respectively, and among subtypes was lowest for venous AMI (13.7% and 16.4%) and highest for NOMI (72.7% and 74.5%). There was a high variability between participating sites for most variables studied.

    CONCLUSIONS: The overall incidence of AMI and AMI subtypes varies worldwide, and case ascertainment is challenging. Pre-hospital delay in presentation was greater than delays after arriving at hospital. Surgery without revascularization was the most common management approach. Nearly half of the patients with AMI died during their index hospitalization. Together, these findings suggest a need for greater awareness of AMI, and better guidance in diagnosis and management.

    TRIAL REGISTRATION: NCT05218863 (registered 19.01.2022).

  13. Li A, Ling L, Qin H, Arabi YM, Myatra SN, Egi M, et al.
    Crit Care, 2024 Jan 23;28(1):30.
    PMID: 38263076 DOI: 10.1186/s13054-024-04804-7
    BACKGROUND: There is conflicting evidence on association between quick sequential organ failure assessment (qSOFA) and sepsis mortality in ICU patients. The primary aim of this study was to determine the association between qSOFA and 28-day mortality in ICU patients admitted for sepsis. Association of qSOFA with early (3-day), medium (28-day), late (90-day) mortality was assessed in low and lower middle income (LLMIC), upper middle income (UMIC) and high income (HIC) countries/regions.

    METHODS: This was a secondary analysis of the MOSAICS II study, an international prospective observational study on sepsis epidemiology in Asian ICUs. Associations between qSOFA at ICU admission and mortality were separately assessed in LLMIC, UMIC and HIC countries/regions. Modified Poisson regression was used to determine the adjusted relative risk (RR) of qSOFA score on mortality at 28 days with adjustments for confounders identified in the MOSAICS II study.

    RESULTS: Among the MOSAICS II study cohort of 4980 patients, 4826 patients from 343 ICUs and 22 countries were included in this secondary analysis. Higher qSOFA was associated with increasing 28-day mortality, but this was only observed in LLMIC (p 

  14. Lee ZY, Dresen E, Lew CCH, Bels J, Hill A, Hasan MS, et al.
    Crit Care, 2024 Jan 06;28(1):15.
    PMID: 38184658 DOI: 10.1186/s13054-023-04783-1
    BACKGROUND: A recent large multicentre trial found no difference in clinical outcomes but identified a possibility of increased mortality rates in patients with acute kidney injury (AKI) receiving higher protein. These alarming findings highlighted the urgent need to conduct an updated systematic review and meta-analysis to inform clinical practice.

    METHODS: From personal files, citation searching, and three databases searched up to 29-5-2023, we included randomized controlled trials (RCTs) of adult critically ill patients that compared higher vs lower protein delivery with similar energy delivery between groups and reported clinical and/or patient-centred outcomes. We conducted random-effect meta-analyses and subsequently trial sequential analyses (TSA) to control for type-1 and type-2 errors. The main subgroup analysis investigated studies with and without combined early physical rehabilitation intervention. A subgroup analysis of AKI vs no/not known AKI was also conducted.

    RESULTS: Twenty-three RCTs (n = 3303) with protein delivery of 1.49 ± 0.48 vs 0.92 ± 0.30 g/kg/d were included. Higher protein delivery was not associated with overall mortality (risk ratio [RR]: 0.99, 95% confidence interval [CI] 0.88-1.11; I2 = 0%; 21 studies; low certainty) and other clinical outcomes. In 2 small studies, higher protein combined with early physical rehabilitation showed a trend towards improved self-reported quality-of-life physical function measurements at day-90 (standardized mean difference 0.40, 95% CI - 0.04 to 0.84; I2 = 30%). In the AKI subgroup, higher protein delivery significantly increased mortality (RR 1.42, 95% CI 1.11-1.82; I2 = 0%; 3 studies; confirmed by TSA with high certainty, and the number needed to harm is 7). Higher protein delivery also significantly increased serum urea (mean difference 2.31 mmol/L, 95% CI 1.64-2.97; I2 = 0%; 7 studies).

    CONCLUSION: Higher, compared with lower protein delivery, does not appear to affect clinical outcomes in general critically ill patients but may increase mortality rates in patients with AKI. Further investigation of the combined early physical rehabilitation intervention in non-AKI patients is warranted.

    PROSPERO ID: CRD42023441059.

  15. Chen Y, Liu Z, Wang Q, Gao F, Xu H, Ke L, et al.
    Crit Care, 2024 Jan 20;28(1):26.
    PMID: 38245768 DOI: 10.1186/s13054-024-04813-6
    BACKGROUND AND AIMS: Exclusive enteral nutrition (EN) is often observed during the first week of ICU admission because of the extra costs and safety considerations for early parenteral nutrition. This study aimed to assess the association between nutrition intake and 28-day mortality in critically ill patients receiving exclusive EN.

    METHODS: This is a post hoc analysis of a cluster-randomized clinical trial that assesses the effect of implementing a feeding protocol on mortality in critically ill patients. Patients who stayed in the ICUs for at least 7 days and received exclusive EN were included in this analysis. Multivariable Cox hazard regression models and restricted cubic spline models were used to assess the relationship between the different doses of EN delivery and 28-day mortality. Subgroups with varying lactate levels at enrollment were additionally analyzed to address the potential confounding effect brought in by the presence of shock-related hypoperfusion.

    RESULTS: Overall, 1322 patients were included in the analysis. The median (interquartile range) daily energy and protein delivery during the first week of enrollment were 14.6 (10.3-19.6) kcal/kg and 0.6 (0.4-0.8) g/kg, respectively. An increase of 5 kcal/kg energy delivery was associated with a significant reduction (approximately 14%) in 28-day mortality (adjusted hazard ratio [HR] = 0.865, 95% confidence interval [CI]: 0.768-0.974, P = 0.016). For protein intake, a 0.2 g/kg increase was associated with a similar mortality reduction with an adjusted HR of 0.868 (95% CI 0.770-0.979). However, the benefits associated with enhanced nutrition delivery could be observed in patients with lactate concentration ≤ 2 mmol/L (adjusted HR = 0.804 (95% CI 0.674-0.960) for energy delivery and adjusted HR = 0.804 (95% CI 0.672-0.962) for protein delivery, respectively), but not in those > 2 mmol/L.

    CONCLUSIONS: During the first week of critical illness, enhanced nutrition delivery is associated with reduced mortality in critically ill patients receiving exclusive EN, only for those with lactate concentration ≤ 2 mmol/L.

    TRIAL REGISTRATION: ISRCTN12233792, registered on November 24, 2017.

  16. Beale R, Janes JM, Brunkhorst FM, Dobb G, Levy MM, Martin GS, et al.
    Crit Care, 2010;14(3):R102.
    PMID: 20525247 DOI: 10.1186/cc9044
    INTRODUCTION: The benefits and use of low-dose corticosteroids (LDCs) in severe sepsis and septic shock remain controversial. Surviving sepsis campaign guidelines suggest LDC use for septic shock patients poorly responsive to fluid resuscitation and vasopressor therapy. Their use is suspected to be wide-spread, but paucity of data regarding global practice exists. The purpose of this study was to compare baseline characteristics and clinical outcomes of patients treated or not treated with LDC from the international PROGRESS (PROmoting Global Research Excellence in Severe Sepsis) cohort study of severe sepsis.

    METHODS: Patients enrolled in the PROGRESS registry were evaluated for use of vasopressor and LDC (equivalent or lesser potency to hydrocortisone 50 mg six-hourly plus 50 microg 9-alpha-fludrocortisone) for treatment of severe sepsis at any time in intensive care units (ICUs). Baseline characteristics and hospital mortality were analyzed, and logistic regression techniques used to develop propensity score and outcome models adjusted for baseline imbalances between groups.

    RESULTS: A total of 8,968 patients with severe sepsis and sufficient data for analysis were studied. A total of 79.8% (7,160/8,968) of patients received vasopressors, and 34.0% (3,051/8,968) of patients received LDC. Regional use of LDC was highest in Europe (51.1%) and lowest in Asia (21.6%). Country use was highest in Brazil (62.9%) and lowest in Malaysia (9.0%). A total of 14.2% of patients on LDC were not receiving any vasopressor therapy. LDC patients were older, had more co-morbidities and higher disease severity scores. Patients receiving LDC spent longer in ICU than patients who did not (median of 12 versus 8 days; P <0.001). Overall hospital mortality rates were greater in the LDC than in the non-LDC group (58.0% versus 43.0%; P <0.001). After adjusting for baseline imbalances, in all mortality models (with vasopressor use), a consistent association remained between LDC and hospital mortality (odds ratios varying from 1.30 to 1.47).

    CONCLUSIONS: Widespread use of LDC for the treatment of severe sepsis with significant regional and country variation exists. In this study, 14.2% of patients received LDC despite the absence of evidence of shock. Hospital mortality was higher in the LDC group and remained higher after adjustment for key determinates of mortality.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links