Displaying all 7 publications

Abstract:
Sort:
  1. Alara OR, Abdurahman NH, Ukaegbu CI
    Curr Res Food Sci, 2021;4:200-214.
    PMID: 33899007 DOI: 10.1016/j.crfs.2021.03.011
    Phenolic compounds are parts of secondary metabolites mostly found in plant species with enormous structural diversities. They can exist as glycosides or aglycones; matrix or free-bound compounds; and comprising mostly polymerized or monomer structures. Additionally, these compounds are not universally dispensed within plants with varied stability. This has contributed to challenging extraction processes; implying that employing a single step or inappropriate extraction technique might change the recovery of phenolic components from the plant samples. Hence, it is important to select an appropriate extraction method so as to recover the targeted phenolic compounds. This is will helps to recover substantial yields from the sample matrix. Therefore, this review mainly focuses on the phenolic compounds and several methods of extraction that are used to obtaining them from plant materials. These extraction methods includes both conventional and unconventional techniques.
  2. Fan HY, Dumont MJ, Simpson BK
    Curr Res Food Sci, 2020 Nov;3:146-157.
    PMID: 32914130 DOI: 10.1016/j.crfs.2020.04.002
    The recovery of gelatins from Atlantic salmon (Salmo salar) skin for film formation and characterization was studied. Fish skins pre-treated with trypsin (250 U/g) produced the highest hydroxyproline content (7.41 ± 0.49 mg hydroxyproline/g treated skin) and yield (53.05 ± 4.38%) of gelatin, as compared to the use of saline solution. Pre-treatment with a lower concentration of trypsin (1 U/g) at a shorter pre-treatment time successfully reduced the degradation of gelatin with co-production of high molecular weight α-chains. Gelatin was further extracted by a trypsin-aided process for film formation and characterization. Films with increasing protein concentration (from 1 to 5%, w/v) exhibited higher thickness, tensile strength, and elongation at break (EAB), but a marked decrease in EAB for films with 6 and 7% (w/v). Films with 5% proteins showed higher thickness, lower tensile strength and higher EAB with increasing concentrations of glycerol (from 10 to 50% of proteins, w/w). All films exhibited high water uptake, decrease in light transmission and an increase in opacity as the protein and glycerol contents increased. Electrophoretic studies showed that the increase in the mechanical properties of the films was correlated with the increase in protein concentration, owing to the increased content of high molecular weight chain fractions. Furthermore, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) revealed the interaction between the proteins and glycerol for all films. This study demonstrated the viability of the trypsin supplementation process to obtain salmon skin gelatin for film formation.
  3. Lim SY, Rosmawati D, Yatiman NH, Wong JE, Haron H, Poh BK
    Curr Res Food Sci, 2022;5:2204-2210.
    PMID: 36387604 DOI: 10.1016/j.crfs.2022.11.006
    Sensitivity to savory taste has been linked to high consumption of savory foods and increased risks of obesity and hypertension. However, there are limited studies that investigate whether obesity indices are correlated with the differences in umami taste perception, particularly in children. This study aimed to investigate the umami detection threshold among children of different ethnicities and the threshold's correlation with obesity indices and blood pressure. A total of 140 subjects were recruited and consisted of a nearly equal distribution of children from three main ethnicities (37.2% Malays, 31.4% Chinese, 31.4% Indians). Umami detection threshold was measured using the two-alternative, forced-choice staircase procedure. Body weight, height, waist circumference and blood pressure of children were measured. Body composition was assessed using bioelectrical impedance analysis (BIA). Mean umami detection threshold was 1.22 ± 1.04 mM and there were no observable differences attributable to the subjects' ethnicities. Body fat percentage was negatively correlated (r = -0.171, p 
  4. Nijman V, Stein FM
    Curr Res Food Sci, 2022;5:191-195.
    PMID: 35106483 DOI: 10.1016/j.crfs.2022.01.009
    Authentication of seafood products by means of molecular techniques has relevance for food sustainability and security, as well as international trade regulation, linked to transparency in food manufacturing. We focus on the molecular detection of the depleted European eel Anguilla anguilla, a species for which strict international trade regulations are in place since 2010, in studies conducted outside Europe. We found thirteen studies from nine countries (Canada, China, Japan, Malaysia, Peru, Singapore, South Korea, Taiwan, and USA) for which, on average, 59 ± 28% of the 330 sequenced eel samples comprised European eel. Only China, Japan, South Korea, and USA reported the import of European eel in the years prior to sampling. The authentication of eel products demonstrates a global, in part illegal, trade in European eel, covered up by incomplete or fraudulent labelling. This calls into question the compliance with existing national and international trade regulations and its implications for food safety and sustainability.
  5. Saadi S, Saari N, Ghazali HM, Abdulkarim MS
    Curr Res Food Sci, 2022;5:207-221.
    PMID: 35106485 DOI: 10.1016/j.crfs.2022.01.011
    The inactivation of antinutritional factors, protease inhibitors within winged bean protein was induced by two respective method treatments. The physical method based on steam vapor that was conducted using an autoclave and chemical method consisting on pH-gradients of buffer solutions prepared at respective acidic pH, neutral pH and alkaline pH ranges. The activity of remaining protease inhibitors of bowman birk inhibitor (BBI), and kunitz-trypsin inhibitor (KTI) after and before treatments was enzymatically confirmed using relevant antagonistic trypsin and combined trypsin-α-chymotrypsin digests. The resulting molecular assembly indicating an interval molecular relaxation range of °0.16 < °DA < °0.2 corresponding to reconformation in protein units with volume-mass changes of -2.17 < ∂v' < +2.17 and with denaturation/unfolding efficiency based on heat capacity ΔCp of 36.36 < DE/UF% < 54.67. These structural changes had a great benefit in determining and producing functional protein hydrolysates.
  6. Vit P, van der Meulen J, Diaz M, Pedro SRM, Esperança I, Zakaria R, et al.
    Curr Res Food Sci, 2023;6:100386.
    PMID: 36846470 DOI: 10.1016/j.crfs.2022.11.005
    The biodiversity of Ecuadorian stingless bees is almost 200 species. Traditional pot-honey harvest in Ecuador is mostly done from nests of the three genera selected here Geotrigona Moure, 1943, Melipona Illiger, 1806, and Scaptotrigona Moure, 1942. The 20 pot-honey samples collected from cerumen pots and three ethnic honeys "abeja de tierra", "bermejo", and "cushillomishki" were analyzed for qualitative and quantitative targeted 1H-NMR honey profiling, and for the Honey Authenticity Test by Interphase Emulsion (HATIE). Extensive data of targeted organic compounds (41 parameters) were identified, quantified, and described. The three honey types were compared by ANOVA. Amino acids, ethanol, hydroxymethylfurfural, aliphatic organic acids, sugars, and markers of botanical origin. The number of phases observed with the HATIE were one in Scaptotrigona and three in Geotrigona and Melipona honeys. Acetic acid (19.60 ± 1.45 g/kg) and lactic acid (24.30 ± 1.65 g/kg) were particularly high in Geotrigona honey (in contrast to 1.3 g/kg acetic acid and 1.6 g/kg lactic acid in Melipona and Scaptotrigona), and with the lowest fructose + glucose (18.39 ± 1.68) g/100g honey compared to Melipona (52.87 ± 1.75) and Scaptotrigona (52.17 ± 0.60). Three local honeys were tested using PCA (Principal Component Analysis), two were assigned with a correct declared bee origin, but "bermejo" was not a Melipona and grouped with the Scaptotrigona cluster. However after HCA (Hierarchical Cluster Analysis) the three honeys were positioned in the Melipona-Scaptotrigona cluster. This research supports targeted 1H-NMR-based profiling of pot-honey metabolomics approach for multi-parameter visualization of organic compounds, as well as descriptive and pertained multivariate statistics (HCA and PCA) to discriminate the stingless bee genus in a set of Geotrigona, Melipona and Scaptotrigona honey types. The NMR characterization of Ecuadorian honey produced by stingless bees emphasizes the need for regulatory norms. A final note on stingless bee markers in pot-honey metabolites which should be screened for those that may extract phylogenetic signals from nutritional traits of honey. Scaptotrigona vitorum honey revealed biosurfactant activity in the HATIE, originating a fingerprint Honey Biosurfactant Test (HBT) for the genus in this set of pot-honeys.
  7. Felicia WXL, Kobun R, Nur Aqilah NM, Mantihal S, Huda N
    Curr Res Food Sci, 2024;8:100680.
    PMID: 38328465 DOI: 10.1016/j.crfs.2024.100680
    Continuous fruit waste poses significant environmental and economic challenges, necessitating innovative fruit coating technologies. This research focuses on harnessing discarded orange peels to extract essential oil (OPEO), which is then integrated into a chitosan/aloe vera (CTS/AVG) matrix. The study comprehensively characterised the coating in terms of its physicochemical properties, antioxidant capacity, and antimicrobial efficacy. The investigation involved an analysis of particle size and distribution in the coating solutions, highlighting changes induced by the incorporation of orange peel essential oil (1 %, 2 % and 3 % v/w) into the chitosan/aloe vera (4:1 v/v) matrix, including particle size reduction and enhanced Brownian motion. The study quantifies a 33.21 % decrease in water vapour transmission rate and a reduction in diffusion coefficient from 9.26 × 10-11 m2/s to 6.20 × 10-11 m2/s following the addition of OPEO to CTS/AVG. Assessment of antioxidant potential employing DPPH radical scavenging assays, revealed that CTS/AVG/3 %OPEO exhibited notably superior radical scavenging activity compared to CTS/AVG, CTS/AVG/1 %OPEO, and CTS/AVG/2 %OPEO, demonstrated by its IC50 value of 17.01 ± 0.45 mg/mL. The study employs the well diffusion method, demonstrating a higher susceptibility of gram-negative bacteria to the coating solutions than gram-positive counterparts. Remarkably, CTS/AVG/3 %OPEO displayed the most pronounced inhibition against Escherichia coli, generating an inhibitory zone diameter of 14 ± 0.8 mm. The results collectively emphasised the potential of CTS/AVG/3 %OPEO as a viable natural alternative to synthetic preservatives within the fruit industry, attributed to its exceptional antioxidant and antimicrobial properties.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links