Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Chan SY, Toh SM, Khan NH, Chung YY, Cheah XZ
    Drug Dev Ind Pharm, 2016 Nov;42(11):1800-1812.
    PMID: 27049232
    Solution-mediated transformation has been cited as one of the main problems that deteriorate dissolution performances of solid dispersion (SD). This is mainly attributed by the recrystallization tendency of poorly soluble drug. Eventually, it will lead to extensive agglomeration which is a key process in reducing the dissolution performance of SD and offsets the true benefit of SD system. Here, a post-processing treatment is suggested in order to reduce the recrystallization tendency and hence bring forth the dissolution advantage of SD system.
  2. Venkata Srikanth M, Songa AS, Nali SR, Battu JR, Kolapalli VR
    Drug Dev Ind Pharm, 2014 Jan;40(1):33-45.
    PMID: 23317339 DOI: 10.3109/03639045.2012.744416
    The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
  3. Liew KB, Tan YT, Peh KK
    Drug Dev Ind Pharm, 2014 Jan;40(1):110-9.
    PMID: 23311593 DOI: 10.3109/03639045.2012.749889
    Difficulty in swallowing tablets or capsules has been identified as one of the contributing factors to non-compliance of geriatric patients. Although orally disintegrating tablet was designed for fast disintegration in mouth, the fear of taking solid tablets and the risk of choking for certain patient populations still exist.
  4. Mohd Amin MC, Ahmad N, Pandey M, Jue Xin C
    Drug Dev Ind Pharm, 2014 Oct;40(10):1340-9.
    PMID: 23875787 DOI: 10.3109/03639045.2013.819882
    This study evaluated the potential of stimuli-responsive bacterial cellulose-g-poly(acrylic acid-co-acrylamide) hydrogels as oral controlled-release drug delivery carriers. Hydrogels were synthesized by graft copolymerization of the monomers onto bacterial cellulose (BC) fibers by using a microwave irradiation technique. The hydrogels were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FT-IR spectroscopy confirmed the grafting. XRD showed that the crystallinity of BC was reduced by grafting, whereas an increase in the thermal stability profile was observed in TGA. SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading. The hydrogels demonstrated a pH-responsive swelling behavior, with decreased swelling in acidic media, which increased with increase in pH of the media, reaching maximum swelling at pH 7. The release profile of the hydrogels was investigated in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The hydrogels showed lesser release in SGF than in SIF, suggesting that hydrogels may be suitable drug carriers for oral controlled release of drug delivery in the lower gastrointestinal tract.
  5. Liew KB, Peh KK, Loh GO, Tan YT
    Drug Dev Ind Pharm, 2014 Sep;40(9):1156-62.
    PMID: 23688276 DOI: 10.3109/03639045.2013.798805
    Although the general pharmacokinetics of cephalexin is quite established up-to-date, however, no population-based study on Cephalexin pharmacokinetics profile in Malay population has been reported yet in the literature.
  6. Md S, Mustafa G, Baboota S, Ali J
    Drug Dev Ind Pharm, 2015;41(12):1922-34.
    PMID: 26057769 DOI: 10.3109/03639045.2015.1052081
    Brain disorders remain the world's leading cause of disability, and account for more hospitalizations and prolonged care than almost all other diseases combined. The majority of drugs, proteins and peptides do not readily permeate into brain due to the presence of the blood-brain barrier (BBB), thus impeding treatment of these conditions.
  7. Shunmugaperumal T, Ramamurthy S
    Drug Dev Ind Pharm, 2012 Mar 12.
    PMID: 22409156 DOI: 10.3109/03639045.2012.665459
    Magnesium fluoride (MgF(2)) nanoparticles-stabilized oil-in-water nanosized emulsion was prepared and assessed for its antiadherent and antibiofilm activities over glass coupons against pathogenic microorganisms like Escherichia coli and Staphylococcus aureus.
  8. Wong TW, Nurulaini H
    Drug Dev Ind Pharm, 2012 Dec;38(12):1417-27.
    PMID: 22309449 DOI: 10.3109/03639045.2011.653364
    Alginate-chitosan pellets prepared by extrusion-spheronization technique exhibited fast drug dissolution.
  9. Tamilvanan S, Venkatesh Babu R, Nappinai A, Sivaramakrishnan G
    Drug Dev Ind Pharm, 2011 Apr;37(4):436-45.
    PMID: 20923389 DOI: 10.3109/03639045.2010.521161
    Hydrophilic and hydrophobic polymer-based nicorandil (10 mg)-loaded peroral tablets were prepared using the wet granulation technique. The influence of varying amounts of hydroxypropyl methylcellulose (HPMC) (30-50 mg), ethylcellulose (2-4 mg), microcrystalline cellulose (5-20 mg) and Aerosil® (5-12 mg) in conjunction with the constant amounts (3 mg) of glidant and lubricant (magnesium stearate and talc) on the in vitro performances of the tablets (hardness, friability, weight variation, thickness uniformity, drug content, and drug release behavior) were investigated.
  10. Tamilvanan S, Kumar BA
    Drug Dev Ind Pharm, 2011 Sep;37(9):1003-15.
    PMID: 21417616 DOI: 10.3109/03639045.2011.555407
    Acetazolamide (ACZM)-loaded anionic, cationic, and neutral-charged oil-in-water nanosized emulsions were prepared and compared with their mean droplet diameter, surface charge, entrapment efficiency, freeze-thaw cycling stability, in vitro drug release, and transcorneal permeation.
  11. Anuar MS, Briscoe BJ
    Drug Dev Ind Pharm, 2010 Aug;36(8):972-9.
    PMID: 20515396 DOI: 10.3109/03639041003610807
    It is generally accepted that the tablet elastic relaxation during compaction plays a vital role in undermining the final tablet mechanical integrity. One of the least investigated stages of the compaction process is the ejection stage.
  12. Venkatesh G, Majid MI, Mansor SM, Nair NK, Croft SL, Navaratnam V
    Drug Dev Ind Pharm, 2010 Jun;36(6):735-45.
    PMID: 20136493 DOI: 10.3109/03639040903460446
    The aim of this study was to prepare a lipid-based self-microemulsifying drug delivery system (SMEDDS) to increase the solubility and oral bioavailability of a poorly water-soluble compound, buparvaquone (BPQ).
  13. Mardziah RE, Wong TW
    Drug Dev Ind Pharm, 2010 Oct;36(10):1149-67.
    PMID: 20380595 DOI: 10.3109/03639041003695063
    Microspheres prepared from rigid guluronic acid- (MG) and flexible mannuronic acid-rich (MC) alginate will undergo different drug release changes with respect to the influence of microwave on the matrix. An in-depth understanding of their differences in drug release changes is attainable through investigating cross-linking agent-free alginate microspheres prepared by spray-drying technique.
  14. Sheshala R, Peh KK, Darwis Y
    Drug Dev Ind Pharm, 2009 Nov;35(11):1364-74.
    PMID: 19832637 DOI: 10.3109/03639040902939213
    AIM: The aim of this study was to prepare insulin-loaded poly(lactic acid)-polyethylene glycol microspheres that could control insulin release at least for 1 week and evaluate their in vivo performance in a streptozotocin-induced diabetic rat model.
    METHODS: The microspheres were prepared using a water-in-oil-in-water double emulsion solvent evaporation technique. Different formulation variables influencing the yield, particle size, entrapment efficiency, and in vitro release profiles were investigated. The pharmacokinetic study of optimized formulation was performed with single dose in comparison with multiple dose of Humulin 30/70 as a reference product in streptozotocin-induced diabetic rats.
    RESULTS: The optimized formulation of insulin microspheres was nonporous, smooth-surfaced, and spherical in structure under scanning electron microscope with a mean particle size of 3.07 microm and entrapment efficiency of 42.74% of the theoretical amount incorporated. The in vitro insulin release profiles was characterized by a bimodal behavior with an initial burst release because of the insulin adsorbed on the microsphere surface, followed by slower and continuous release corresponding to the insulin entrapped in polymer matrix.
    CONCLUSIONS: The optimized formulation and reference were comparable in the extent of absorption. Consequently, these microspheres can be proposed as new controlled parenteral delivery system.
  15. Yakubu R, Peh KK, Tan YT
    Drug Dev Ind Pharm, 2009 Dec;35(12):1430-8.
    PMID: 19929202 DOI: 10.3109/03639040902988566
    The purpose of this study was to design a 24-hour controlled porosity osmotic pump system that utilizes polyvinyl pyrrolidone (PVP) as an osmotic-suspending/release retarding agent of drugs.
  16. Katas H, Abdul Ghafoor Raja M, Ee LC
    Drug Dev Ind Pharm, 2014 Nov;40(11):1443-50.
    PMID: 23962166 DOI: 10.3109/03639045.2013.828222
    Recently, a newly discovered Dicer-substrate siRNA (DsiRNA) demonstrates higher potency in gene silencing than siRNA but both suffer from rapid degradation, poor cellular uptake and chemical instability. Therefore, Tat-peptide was exploited to protect and facilitate their delivery into cells. In this study, Tat-peptide was complexed with siRNA or DsiRNA through simple complexation. The physicochemical properties (particle size, surface charge and morphology) of the complexes formed were then characterized. The ability of Tat-peptide to carry and protect siRNA or DsiRNA was determined by UV-Vis spectrophotometry and serum protection assay, respectively. Cytotoxicity effect of these complexes was assessed in V79 cell line. siRNA-Tat complexes had particle size ranged from 186 ± 17.8 to 375 ± 8.3 nm with surface charge ranged from -9.3 ± 1.0 to +13.5 ± 1.0 mV, depending on the Tat-to-siRNA concentration ratio. As for DsiRNA-Tat complexes, the particle size was smaller than the ones complexed with siRNA, ranging from 176 ± 8.6 to 458 ± 14.7 nm. Their surface charge was in the range of +27.1 ± 3.6 to +38.1 ± 0.9 mV. Both oligonucleotide (ON) species bound strongly to Tat-peptide, forming stable complexes with loading efficiency of more than 86%. These complexes were relatively non cytotoxic as the cell viability of ∼90% was achieved. In conclusion, Tat-peptide has a great potential as siRNA and DsiRNA vector due to the formation of stable complexes with desirable physical characteristics, low toxicity and able to carry high amount of siRNA or DsiRNA.
  17. Rehman K, Zulfakar MH
    Drug Dev Ind Pharm, 2014 Apr;40(4):433-40.
    PMID: 23937582 DOI: 10.3109/03639045.2013.828219
    Transdermal drug delivery systems are a constant source of interest because of the benefits that they afford in overcoming many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Gels are semisolid formulations, which have an external solvent phase, may be hydrophobic or hydrophilic in nature, and are immobilized within the spaces of a three-dimensional network structure. Gels have a broad range of applications in food, cosmetics, biotechnology, pharmatechnology, etc. Typically, gels can be distinguished according to the nature of the liquid phase, for example, organogels (oleogels) contain an organic solvent, and hydrogels contain water. Recent studies have reported other types of gels for dermal drug application, such as proniosomal gels, emulgels, bigels and aerogels. This review aims to introduce the latest trends in transdermal drug delivery via traditional hydrogels and organogels and to provide insight into the latest gel types (proniosomal gels, emulgels, bigels and aerogels) as well as recent technologies for topical and transdermal drug delivery.
  18. Aziz HA, Peh KK, Tan YT
    Drug Dev Ind Pharm, 2007 Nov;33(11):1263-72.
    PMID: 18058323
    Curcumin, the main active constituent of turmeric herb (Curcuma longa L.) have been reported to possess many medicinal values. The application of curcumin in dermatological preparations is limited by their intense yellow color property, which stains the fabric and skin. The objectives of this study were to reduce the color staining effect and enhance the stability of curcumin via microencapsulation using gelatin simple coacervation method. As for curcumin, ethanol and acetone were used as coacervating solvents. Curcumin was dispersed in ethanol while dissolved in acetone. Irrespective of the types of coacervating solvents used, microencapsulation resolved the color-staining problem and enhanced the flow properties and photo-stability of curcumin. Nevertheless, it was found that more spherical curcumin microcapsules with higher yield, higher curcumin loading, and higher entrapment efficiency were obtained with acetone than ethanol. The in vitro release of curcumin after microencapsulation was slightly prolonged. Further evaluation of the effects of solubility of core materials in coacervating solvent or polymeric aqueous solution using six different drug compounds, namely, ketoconazole, ketoprofen, magnesium stearate, pseudoephedrine HCl, diclofenac sodium, and paracetamol, suggested that the solubility of core materials in aqueous polymeric solution determined the successful formation of microcapsules. Microcapsules could only be formed if the core materials were not dissolved in the aqueous polymeric solution while the core materials could either be dissolved or dispersed in the coacervating solvent. In summary, microencapsulation not only circumvents the color-staining problem but also improved the stability and flowability of curcumin. The solubility of core material in aqueous polymeric solution plays a pivotal role in determining the successful formation of microcapsules.
  19. Wong TW, Wahab S, Anthony Y
    Drug Dev Ind Pharm, 2007 Jul;33(7):737-46.
    PMID: 17654022
    The drug release behavior of beads made of poly(methyl vinyl ether-co-maleic acid) was investigated with respect to the influence of microwave irradiation. The beads were prepared by an extrusion method with sodium diclofenac as a model water-soluble drug. The beads were subjected to microwave irradiation at 80 W for 5 and 20 min, and at 300 W for 1 min 20 s and 5 min 20 s. The profiles of drug dissolution, drug content, drug-polymer interaction, and polymer-polymer interaction were determined by using dissolution testing, drug content assay, differential scanning calorimetry, and Fourier transform infra-red spectroscopy. Keeping the level of supplied irradiation energy identical, treatment of beads by microwave at varying intensities of irradiation did not bring about similar drug release profiles. The extent and rate of drug released from beads were markedly enhanced through treating the samples by microwave at 80 W as a result of loss of polymer-polymer interaction via the (CH(2))(n) moiety, but decreased upon treating the beads by microwave at 300 W following polymer-polymer interaction via the O-H, COOH, and COO(-) moieties as well as drug-polymer interaction via the N-H, O-H, COO(-), and C-O moieties. The beads treated by microwave at 300 W exhibited a higher level of drug release retardation capacity than those that were treated by microwave at 80 W in spite of polymer-polymer interaction via the (CH(2))(n) moiety was similarly reduced in the matrix. The mechanism of drug release of both microwave-treated and untreated beads tended to follow zero order kinetics. The drug release was markedly governed by the state of polymer relaxation of the matrix and was in turn affected by the state of polymer-polymer and/or drug-polymer interaction in beads.
  20. Billa N, Yuen KH, Peh KK
    Drug Dev Ind Pharm, 1998 Jan;24(1):45-50.
    PMID: 15605596
    Ethyl acrylate-methyl methacrylate copolymer (Eudragit NE40D) was evaluated as matrix material for preparing controlled-release tablets of diclofenac sodium. Drug release could be modified in a predictable manner by varying the Eudragit NE40D content, but was pH dependent, being markedly reduced at lower pH. This could be attributed to the low solubility of the drug at these pH values. Thermal treatment of the tablets at 60 degrees C was also found to affect the rate of drug release, which was found to decrease with an increase in the treatment duration, but could be stabilized after 96 hr of treatment. This was also associated with a corresponding increase in the tablet tensile strength. However, treatment of the granules for 5 hr prior to compaction into tablets could shorten the stabilizing time of the drug release to 48 hr and that of the tensile strength to 24 hr. The effect of thermal treatment may be ascribed to better coalescence of the Eudragit particles to form a fine network, resulting in matrix of higher tortuosity and lower porosity.
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links