Displaying all 7 publications

  1. Md Noh SM, Sheikh Abdul Kadir SH, Bannur ZM, Froemming GA, Abdul Hamid Hasani N, Mohd Nawawi H, et al.
    Exp Eye Res, 2014 Oct;127:236-42.
    PMID: 25139730 DOI: 10.1016/j.exer.2014.08.005
    Anti-Vascular Endothelial Growth Factors (Anti-VEGF) agents have received recent interest as potential anti-fibrotic agents for their concurrent use with trabeculectomy. Preliminary cohort studies have revealed improved bleb morphology following trabeculectomy augmented with ranibizumab. The effects of this humanized monoclonal antibody on human Tenon's fibroblast (HTF), the key player of post trabeculectomy scar formation, are not fully understood. This study was conducted to understand the effects of ranibizumab on extracellular matrix production by HTF. The effect of ranibizumab on HTF proliferation and cell viability was determined using MTT assay (3-(4,5-dimethylthiazone-2-yl)-2,5-diphenyl tetrazolium). Ranibizumab at concentrations ranging from 0.01 to 0.5 mg/mL were administered for 24, 48 and 72 h in serum and serum free conditions. Supernatants and cell lysates from samples were assessed for collagen type 1 alpha 1 and fibronectin mRNA and protein level using quantitative real time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA). After 48-h, ranibizumab at 0.5 mg/mL, significantly induced cell death under serum-free culture conditions (p 
  2. Che Azemin MZ, Ab Hamid F, Aminuddin A, Wang JJ, Kawasaki R, Kumar DK
    Exp Eye Res, 2013 Nov;116:355-358.
    PMID: 24512773 DOI: 10.1016/j.exer.2013.10.010
    The fractal dimension is a global measure of complexity and is useful for quantifying anatomical structures, including the retinal vascular network. A previous study found a linear declining trend with aging on the retinal vascular fractal dimension (DF); however, it was limited to the older population (49 years and older). This study aimed to investigate the possible models of the fractal dimension changes from young to old subjects (10-73 years). A total of 215 right-eye retinal samples, including those of 119 (55%) women and 96 (45%) men, were selected. The retinal vessels were segmented using computer-assisted software, and non-vessel fragments were deleted. The fractal dimension was measured based on the log-log plot of the number of grids versus the size. The retinal vascular DF was analyzed to determine changes with increasing age. Finally, the data were fitted to three polynomial models. All three models are statistically significant (Linear: R2 = 0.1270, 213 d.f., p 
  3. Agarwal R, Iezhitsa I, Agarwal P, Spasov A
    Exp Eye Res, 2012 Aug;101:82-9.
    PMID: 22668657 DOI: 10.1016/j.exer.2012.05.008
    Magnesium is one of the most important regulatory cation involved in several biological processes. It is important for maintaining the structural and functional integrity of vital ocular tissues such as lens. Presence of high magnesium content especially in the peripheral part of lens as compared to aqueous and vitreous humor has been observed. Magnesium plays significant role as a cofactor for more than 350 enzymes in the body especially those utilizing ATP. Membrane associated ATPase functions that are crucial in regulating the intracellular ionic environment, are magnesium-dependent. Moreover, the enzymes involved in ATP production and hydrolysis are also magnesium-dependent. Magnesium deficiency by interfering with ATPase functions causes increased intracellular calcium and sodium and decreases intracellular potassium concentration. Furthermore, magnesium deficiency is associated with increased oxidative stress secondary to increased expression of inducible nitric oxide synthase and increased production of nitric oxide. Thus the alterations in lenticular redox status and ionic imbalances form the basis of the association of magnesium deficiency with cataract. In this paper we review the mechanisms involved in magnesium homeostasis and the role of magnesium deficiency in the pathogenesis of cataract.
  4. Agarwal R, Iezhitsa I, Awaludin NA, Ahmad Fisol NF, Bakar NS, Agarwal P, et al.
    Exp Eye Res, 2013 May;110:35-43.
    PMID: 23428743 DOI: 10.1016/j.exer.2013.02.011
    Cataract, a leading cause of blindness, is characterized by lenticular opacities resulting from denaturation of lens proteins due to activation of calcium-dependent enzyme, calpain. Magnesium (Mg(2+)) plays an important role not only in maintaining a low lenticular calcium (Ca(2+)) and sodium concentration but also in preserving the lens redox status. Taurine has also been shown to reduce lenticular oxidative stress. Present study evaluated the anticataract effects of magnesium taurate in vivo and in vitro. Among the five groups of 9 Sprague Dawley rats each, two groups received 30% galactose diet with topical (GDMT) or oral treatment (GDMO) with magnesium taurate. Two groups received 30% galactose diet with topical (GDT) or oral vehicle (GDO). Remaining 1 group received normal diet (ND). Weekly slit lamp examination was done during 21 days experimental period and then all rats were sacrificed; Ca/Mg ratio and antioxidant parameters including reduced glutathione (GSH), catalase and superoxide dismutase (SOD) activities were measured in the isolated lenses using ELISA. In the in vitro study, 2 groups of 10 normal rat lenses were incubated in Dulbecco's Modified Eagle's Medium (DMEM) with galactose while 1 similar group was incubated in DMEM without galactose. In one of the groups, galactose containing medium was supplemented with magnesium taurate. After 48 h of incubation, lenses were photographed and Ca(2+)/Mg(2+) ratio and antioxidant parameters were measured as for in vivo study. The in vivo study, at the end of experimental period, demonstrated delay in the development of cataract with a mean opacity index of 0.53 ± 0.04 and 0.51 ± 0.03 in GDMO (p < 0.05 versus GDO) and GDMT (p < 0.01 versus GDT) respectively. Histopathological grading showed a lower mean value in treated groups, however, the differences from corresponding controls were not significant. Lenticular Ca(2+)/Mg(2+) ratio with a mean value of 1.20 ± 0.26 and 1.05 ± 0.26 in GDMO and GDMT was significantly lower than corresponding controls (p < 0.05) and in GDMT no significant difference was observed from ND. Lenticular GSH and catalase activities were significantly lower and SOD activity was significantly higher in all galactose fed groups. However, in GDMT, GSH and catalase were significantly higher than corresponding control with mean values of 0.96 ± 0.30 μmol/gm lens weight and 56.98 ± 9.86 μmol/g lens protein respectively (p < 0.05 for GSH and p < 0.01 for catalase). SOD activity with mean values of 13.05 ± 6.35 and 13.27 ± 7.61 units/mg lens protein in GDMO and GDMT respectively was significantly lower compared to corresponding controls (p < 0.05) signifying lesser upregulation of SOD due to lesser oxidative stress in treated groups. In the in vitro study, lenses incubated in magnesium taurate containing medium showed less opacity and a lower mean Ca(2+)/Mg(2+) ratio of 1.64 ± 0.03, which was not significantly different from lenses incubated in DMEM without galactose. Lens GSH and catalase activities were restored to normal in lenses incubated in magnesium taurate containing medium. Both in vivo and in vitro studies demonstrated that treatment with magnesium taurate delays the onset and progression of cataract in galactose fed rats by restoring the lens Ca(2+)/Mg(2+) ratio and lens redox status.
  5. Razali N, Agarwal R, Agarwal P, Tripathy M, Kapitonova MY, Kutty MK, et al.
    Exp Eye Res, 2016 Feb;143:9-16.
    PMID: 26424219 DOI: 10.1016/j.exer.2015.09.014
    Steroid-induced hypertension and glaucoma is associated with increased extracellular meshwork (ECM) deposition in trabecular meshwork (TM). Previous studies have shown that single drop application of trans-resveratrol lowers IOP in steroid-induced ocular hypertensive (SIOH) rats. This IOP lowering is attributed to activation of adenosine A1 receptors, which may lead to increased matrix metalloproteinase (MMP)-2 activity. This study evaluated the effect of repeated topical application of trans-resveratrol for 21 days in SIOH animals on IOP, changes in MMP-2 level in aqueous humor, trabecular meshwork and retinal morphology and retinal redox status. We observed that treatment with trans-resveratrol results in significant and sustained IOP reduction in SIOH rats. This IOP reduction is associated with significantly higher aqueous humor total MMP-2 level; significantly reduced TM thickness and increased number of TM cells. Treatment with trans-resveratrol also significantly increased ganglion cell layer (GCL) thickness, the linear cell density in the GCL and inner retina thickness; and significantly reduced retinal oxidative stress compared to the SIOH vehicle-treated group. In conclusion, repeated dose topical application of trans-resveratrol produces sustained IOP lowering effect, which is associated with increased level of aqueous humor MMP-2, normalization of TM and retinal morphology and restoration of retinal redox status.
  6. Bin Sahadan MY, Tong WY, Tan WN, Leong CR, Bin Misri MN, Chan M, et al.
    Exp Eye Res, 2019 01;178:10-14.
    PMID: 30243569 DOI: 10.1016/j.exer.2018.09.011
    Microbial keratitis is the infection caused by pathogenic microorganisms that commonly occurs among the contact lens users. Various antimicrobial compounds were coated on contact lenses to kill keratitis causing microorganisms, however these compounds caused several adverse side effects. Hence, the aim of this study is to develop a silicone hydrogel contact lens coated with phomopsidione nanoparticle that inhibit keratitis causing clinical isolates. Phomopsidione nanoparticles were synthesized using polyvinyl alcohol as encapsulant. The nanoparticles showed an average size of 77.45 nm, with neutral surface charge. Two drug release patterns were observed in the drug release profile, which are the initial slow release phase with extended drug release (release rate 46.65 μg/h), and the burst release phase observed on Day 2 (release rate 2224.49 μg/h). This well-regulated drug delivery system enables the control of drug release to meet the therapeutic requirements. On agar diffusion assay, 3 out of 5 test microorganisms were inhibited by phomopsidione nanoparticle coated contact lenses, including two Gram negative bacteria. Besides, all test microorganisms showed at least 99% of growth reduction, with the treatment of the contact lens model. The drug loaded onto the nanoparticles is sufficient to prevent the bacterial growth. In conclusion, this study provides an effective alternative to combat keratitis-causing microorganisms among contact wearers.
  7. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM
    Exp Eye Res, 2020 05;194:107996.
    PMID: 32156652 DOI: 10.1016/j.exer.2020.107996
    Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links