Displaying all 5 publications

Abstract:
Sort:
  1. Mabruk MJ, O'Flatharta C
    Expert Rev Mol Diagn, 2005 Nov;5(6):907-16.
    PMID: 16255632
    A number of methods exist to detect levels of telomerase activity and the presence of telomerase subunits in a variety of tissues. As telomerase activation seems to be an important step in tumorigenesis, accurate detection of the presence and activity of the enzyme and its subunits is vital. The original method of detecting telomerase activity was developed by Kim and coworkers in 1994, and was termed the telomeric repeat amplification protocol. This assay led to a staggering increase in the number of telomerase-associated publications in scientific journals (85 publications from 1974-1994, 5063 publications from 1994-2004). A number of methods have been described to detect telomeres and to measure their length, with the standard measurement of telomere length performed using a modification of the Southern blot protocol. RNA in situ hybridization can be performed to detect levels of the RNA component of telomerase, and standard in situ hybridization and immunohistochemistry can be applied to examine expression levels and localization of the catalytic subunit of the enzyme. Reverse transcriptase PCR has also been applied to assess expression levels of the telomerase components in various tissues. This review provides a synopsis of telomeres, telomerase, telomerase and cancer, and finally, methods for the detection of telomerase in cancer.
  2. Mabruk MJ
    Expert Rev Mol Diagn, 2004 Sep;4(5):653-61.
    PMID: 15347259
    In situ hybridization is a method for detecting specific nucleic acid sequences within individual cells. This technique permits visualization of viral nucleic acid or gene expression in individual cells within their histologic context. In situ hybridization is based on the complementary binding of a labeled nucleic acid probe to complementary sequences in cells or tissue sections, followed by visualization of target sequences within the cells. It has been used widely for the detection of viral nucleic acid sequences within individual cells. This review will define the technical approaches of in situ hybridization and its current application to detect viral nucleic acids within formalin-fixed, paraffin-embedded tissue samples, with special reference to the Epstein-Barr virus.
  3. Thergarajan G, Sekaran SD
    Expert Rev Mol Diagn, 2023;23(8):643-651.
    PMID: 37417532 DOI: 10.1080/14737159.2023.2234815
    INTRODUCTION: Every year, a significant rise in dengue incidence observed is responsible for 10% of fever episodes in children and adolescents in endemic countries. Considering that the symptoms of dengue are similar to those of many other viruses, early diagnosis of the disease has long been difficult, and lack of sensitive diagnostic tools may be another factor contributing to a rise in dengue incidence.

    AREAS COVERED: This review will highlight dengue diagnostics strategies and discuss other possible targets for dengue diagnosis. Understanding the dynamics of the immune response and how it affects viral infection has enabled informed diagnosis. As more technologies emerge, precise assays that include some clinical markers need to be included.

    EXPERT OPINION: Future diagnostic strategies will require the use both viral and clinical markers in a serial manner with the use of artificial intelligence technology to determine from the first point of illness to better determine severity status and management. A definitive endpoint is not in the horizon as the disease as well as the virus is constantly evolving and hence many developed assays need to be constantly changing some of their reagents periodically as newer genotypes and probably too serotypes emerge.

  4. Su KY, Koh Kok JY, Chua YW, Ong SD, Ser HL, Pusparajah P, et al.
    Expert Rev Mol Diagn, 2022 Dec;22(12):1057-1062.
    PMID: 36629056 DOI: 10.1080/14737159.2022.2166403
    INTRODUCTION: Extracellular vesicles (EVs) are spherical membrane-derived lipid bilayers released by cells. The human microbiota consists of trillions of microorganisms, with bacteria being the largest group secreting microbial EVs. The discovery of bacterial EVs (BEVs) has garnered interest among researchers as potential diagnostic markers, given that the microbiota is known to be associated with various diseases and EVs carry important macromolecular cargo for intercellular interaction.

    AREAS COVERED: The differential bacterial composition identified from BEVs isolated from biofluids between patients and healthy controls may be valuable for detecting diseases. Therefore, BEVs may serve as novel diagnostic markers. Literature search on PubMed and Google Scholar databases was conducted. In this special report, we outline the commonly used approach for investigating BEVs in biofluids, the 16S ribosomal RNA gene sequencing of V3-V4 hypervariable regions, and the recent studies exploring the potential of BEVs as biomarkers for various diseases.

    EXPERT OPINION: The emerging field of BEVs offers new possibilities for the diagnosis of various types of diseases, although there remain issues that need to be resolved in this research area to implement BEVs in clinical applications. Hence, it is important for future studies to take these challenges into consideration when investigating the diagnostic value of BEVs.

  5. Parlatini V, Bellato A, Gabellone A, Margari L, Marzulli L, Matera E, et al.
    Expert Rev Mol Diagn, 2024 Mar 26.
    PMID: 38506617 DOI: 10.1080/14737159.2024.2333277
    INTRODUCTION: Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental conditions and is highly heterogeneous in terms of symptom profile, associated cognitive deficits, comorbidities, and outcomes. Heterogeneity may also affect the ability to recognize and diagnose this condition. The diagnosis of ADHD is primarily clinical but there are increasing research efforts aiming at identifying biomarkers that can aid the diagnosis.

    AREAS COVERED: We first discuss the definition of biomarkers and the necessary research steps from discovery to implementation. We then provide a broad overview of research studies on candidate diagnostic biomarkers in ADHD encompassing genetic/epigenetic, biochemical, neuroimaging, neurophysiological and neuropsychological techniques. Finally, we critically appraise current limitations in the field and suggest possible ways forward.

    EXPERT OPINION: Despite the large number of studies and variety of techniques used, no promising biomarkers have been identified so far. Clinical and biological heterogeneity as well as methodological limitations, including small sample size, lack of standardization, confounding factors, and poor replicability, have hampered progress in the field. Going forward, increased international collaborative efforts are warranted to support larger and more robustly designed studies, develop multimodal datasets to combine biomarkers and improve diagnostic accuracy, and ensure reproducibility and meaningful clinical translation.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links