Displaying all 4 publications

Abstract:
Sort:
  1. Azman A, Vasodavan K, Joseph N, Kumar S, Hamat RA, Nordin SA, et al.
    Future Microbiol, 2019 Nov;14:1417-1428.
    PMID: 31777284 DOI: 10.2217/fmb-2019-0174
    Aims: To study physiological and proteomic analysis of Stenotrophomonas maltophilia grown under iron-limited condition. Methods: One clinical and environmental S. maltophilia isolates grown under iron-depleted conditions were studied for siderophore production, ability to kill nematodes and alteration in protein expression using isobaric tags for relative and absolute quantification (ITRAQ). Results & conclusions: Siderophore production was observed in both clinical and environmental strains under iron-depleted conditions. Caenorhabditis elegans assay showed higher killing rate under iron-depleted (96%) compared with normal condition (76%). The proteins identified revealed, 96 proteins upregulated and 26 proteins downregulated for the two isolates under iron depletion. The upregulated proteins included several iron acquisition proteins, metabolic proteins and putative virulence proteins.
  2. Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, et al.
    Future Microbiol, 2021 11;16:1289-1301.
    PMID: 34689597 DOI: 10.2217/fmb-2021-0024
    COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
  3. Mienda BS, Salihu R, Adamu A, Idris S
    Future Microbiol, 2018 03;13:455-467.
    PMID: 29469596 DOI: 10.2217/fmb-2017-0195
    The growing number of multidrug-resistant pathogenic bacteria is becoming a world leading challenge for the scientific community and for public health. However, advances in high-throughput technologies and whole-genome sequencing of bacterial pathogens make the construction of bacterial genome-scale metabolic models (GEMs) increasingly realistic. The use of GEMs as an alternative platforms will expedite identification of novel unconditionally essential genes and enzymes of target organisms with existing and forthcoming GEMs. This approach will follow the existing protocol for construction of high-quality GEMs, which could ultimately reduce the time, cost and labor-intensive processes involved in identification of novel antimicrobial drug targets in drug discovery pipelines. We discuss the current impact of existing GEMs of selected multidrug-resistant pathogenic bacteria for identification of novel antimicrobial drug targets and the challenges of closing the gap between genome-scale metabolic modeling and conventional experimental trial-and-error approaches in drug discovery pipelines.
  4. Wang H, Xu YC, Hsueh PR
    Future Microbiol, 2016 10;11:1461-1477.
    PMID: 27750452
    In the Asia-Pacific region, Candida albicans is the predominant Candida species causing invasive candidiasis/candidemia in Australia, Japan, Korea, Hong Kong, Malaysia, Singapore and Thailand whereas C. tropicalis is the most frequently encountered Candida species in Pakistan and India. Invasive isolates of C. albicans, C. parapsilosis complex and C. tropicalis remain highly susceptible to fluconazole (>90% susceptible). Fluconazole resistance (6.8-15%), isolates with the non-wild-type phenotype for itraconazole susceptibility (3.9-10%) and voriconazole (5-17.8%), and echinocandin resistance (2.1-2.2% in anidulafungin and 2.2% in micafungin) among invasive C. glabrata complex isolates are increasing in prevalence. Moreover, not all isolates of C. tropicalis have been shown to be susceptible to fluconazole (nonsusceptible rate, 5.7-11.6% in China) or voriconazole (nonsusceptible rate, 5.7-9.6% in China).
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links