Displaying all 5 publications

Abstract:
Sort:
  1. Mitropoulos K, Al Jaibeji H, Forero DA, Laissue P, Wonkam A, Lopez-Correa C, et al.
    Hum Genomics, 2015 Jun 18;9:11.
    PMID: 26081768 DOI: 10.1186/s40246-015-0033-3
    In recent years, the translation of genomic discoveries into mainstream medical practice and public health has gained momentum, facilitated by the advent of new technologies. However, there are often major discrepancies in the pace of implementation of genomic medicine between developed and developing/resource-limited countries. The main reason does not only lie in the limitation of resources but also in the slow pace of adoption of the new findings and the poor understanding of the potential that this new discipline offers to rationalize medical diagnosis and treatment. Here, we present and critically discuss examples from the successful implementation of genomic medicine in resource-limited countries, focusing on pharmacogenomics, genome informatics, and public health genomics, emphasizing in the latter case genomic education, stakeholder analysis, and economics in pharmacogenomics. These examples can be considered as model cases and be readily replicated for the wide implementation of pharmacogenomics and genomic medicine in other resource-limited environments.
  2. Tan SN, Sim SP, Khoo AS
    Hum Genomics, 2018 06 18;12(1):29.
    PMID: 29914565 DOI: 10.1186/s40246-018-0160-8
    BACKGROUND: The mechanism underlying chromosome rearrangement in nasopharyngeal carcinoma (NPC) remains elusive. It is known that most of the aetiological factors of NPC trigger oxidative stress. Oxidative stress is a potent apoptotic inducer. During apoptosis, chromatin cleavage and DNA fragmentation occur. However, cells may undergo DNA repair and survive apoptosis. Non-homologous end joining (NHEJ) pathway has been known as the primary DNA repair system in human cells. The NHEJ process may repair DNA ends without any homology, although region of microhomology (a few nucleotides) is usually utilised by this DNA repair system. Cells that evade apoptosis via erroneous DNA repair may carry chromosomal aberration. Apoptotic nuclease was found to be associated with nuclear matrix during apoptosis. Matrix association region/scaffold attachment region (MAR/SAR) is the binding site of the chromosomal DNA loop structure to the nuclear matrix. When apoptotic nuclease is associated with nuclear matrix during apoptosis, it potentially cleaves at MAR/SAR. Cells that survive apoptosis via compromised DNA repair may carry chromosome rearrangement contributing to NPC tumourigenesis. The Abelson murine leukaemia (ABL) gene at 9q34 was targeted in this study as 9q34 is a common region of loss in NPC. This study aimed to identify the chromosome breakages and/or rearrangements in the ABL gene in cells undergoing oxidative stress-induced apoptosis.

    RESULTS: In the present study, in silico prediction of MAR/SAR was performed in the ABL gene. More than 80% of the predicted MAR/SAR sites are closely associated with previously reported patient breakpoint cluster regions (BCR). By using inverse polymerase chain reaction (IPCR), we demonstrated that hydrogen peroxide (H2O2)-induced apoptosis in normal nasopharyngeal epithelial and NPC cells led to chromosomal breakages within the ABL BCR that contains a MAR/SAR. Intriguingly, we detected two translocations in H2O2-treated cells. Region of microhomology was found at the translocation junctions. This observation is consistent with the operation of microhomology-mediated NHEJ.

    CONCLUSIONS: Our findings suggested that oxidative stress-induced apoptosis may participate in chromosome rearrangements of NPC. A revised model for oxidative stress-induced apoptosis mediating chromosome rearrangement in NPC is proposed.

  3. Mohamad NA, Ramachandran V, Mohd Isa H, Chan YM, Ngah NF, Ching SM, et al.
    Hum Genomics, 2019 02 22;13(1):13.
    PMID: 30795802 DOI: 10.1186/s40246-019-0197-3
    BACKGROUND: The association of HTRA1 rs11200638 and ARMS2 rs10490924 gene polymorphisms with response to intravitreal ranibizumab therapy among neovascular AMD (nAMD) subjects in Malaysia was determined in this study, followed by the expression of HTRA1 and ARMS2 genes.

    RESULTS: Both single nucleotide polymorphisms (SNPs) recorded a significant association between nAMD and controls with HTRA1 rs11200638 at P = 0.018 (OR = 1.52, 95% CI = 1.07-215) and ARMS2 rs10490924 at P 

  4. Hoh BP, Deng L, Julia-Ashazila MJ, Zuraihan Z, Nur-Hasnah M, Nur-Shafawati AR, et al.
    Hum Genomics, 2015 Jul 22;9:16.
    PMID: 26194999 DOI: 10.1186/s40246-015-0039-x
    Fine scale population structure of Malays - the major population in Malaysia, has not been well studied. This may have important implications for both evolutionary and medical studies. Here, we investigated the population sub-structure of Malay involving 431 samples collected from all states from peninsular Malaysia and Singapore. We identified two major clusters of individuals corresponding to the north and south peninsular Malaysia. On an even finer scale, the genetic coordinates of the geographical Malay populations are in correlation with the latitudes (R(2) = 0.3925; P = 0.029). This finding is further supported by the pairwise FST of Malay sub-populations, of which the north and south regions showed the highest differentiation (FST [North-south] = 0.0011). The collective findings therefore suggest that population sub-structure of Malays are more heterogenous than previously expected even within a small geographical region, possibly due to factors like different genetic origins, geographical isolation, could result in spurious association as demonstrated in our analysis. We suggest that cautions should be taken during the stage of study design or interpreting the association signals in disease mapping studies which are expected to be conducted in Malay population in the near future.
  5. Zhou Y, Nevosadová L, Eliasson E, Lauschke VM
    Hum Genomics, 2023 Feb 28;17(1):15.
    PMID: 36855170 DOI: 10.1186/s40246-023-00461-z
    BACKGROUND: Genetic variability in the cytochrome P450 CYP2C9 constitutes an important predictor for efficacy and safety of various commonly prescribed drugs, including coumarin anticoagulants, phenytoin and multiple non-steroidal anti-inflammatory drugs (NSAIDs). A global map of CYP2C9 variability and its inferred functional consequences has been lacking.

    RESULTS: Frequencies of eight functionally relevant CYP2C9 alleles (*2, *3, *5, *6, *8, *11, *13 and *14) were analyzed. In total, 108 original articles were identified that included genotype data from a total of 81,662 unrelated individuals across 70 countries and 40 unique ethnic groups. The results revealed that CYP2C9*2 was most abundant in Europe and the Middle East, whereas CYP2C9*3 was the main reason for reduced CYP2C9 activity across South Asia. Our data show extensive variation within superpopulations with up to tenfold differences between geographically adjacent populations in Malaysia, Thailand and Vietnam. Translation of genetic CYP2C9 variability into functional consequences indicates that up to 40% of patients in Southern Europe and the Middle East might benefit from warfarin and phenytoin dose reductions, while 3% of patients in Southern Europe and Israel are recommended to reduce starting doses of NSAIDs.

    CONCLUSIONS: This study provides a comprehensive map of the genetic and functional variability of CYP2C9 with high ethnogeographic resolution. The presented data can serve as a useful resource for CYP2C9 allele and phenotype frequencies and might guide the optimization of genotyping strategies, particularly for indigenous and founder populations with distinct genetic profiles.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links