Displaying all 2 publications

Abstract:
Sort:
  1. Sukmana I
    J Artif Organs, 2012 Sep;15(3):215-24.
    PMID: 22527978 DOI: 10.1007/s10047-012-0644-6
    Tissue engineering seeks strategies to design polymeric scaffolds that allow high-cell-density cultures with signaling molecules and suitable vascular supply. One major obstacle in tissue engineering is the inability to create thick engineered-tissue constructs. A pre-vascularized tissue scaffold appears to be the most favorable approach to avoid nutrient and oxygen supply limitations as well as to allow waste removal, factors that are often hurdles in developing thick engineered tissues. Vascularization can be achieved using strategies in which cells are cultured in bioactive polymer scaffolds that can mimic extracellular matrix environments. This review addresses recent advances and future challenges in developing and using bioactive polymer scaffolds to promote tissue construct vascularization.
  2. Manap HH, Abdul Wahab AK
    J Artif Organs, 2017 Mar;20(1):8-17.
    PMID: 27193131 DOI: 10.1007/s10047-016-0905-x
    The implementation of extracorporeal carbon dioxide removal (ECCO2R) as one of the extracorporeal life support system is getting more attention today. Thus, the objectives of this paper are to study the clinical practice of commercial ECCO2R system, current trend of its development and also the perspective on future improvement that can be done to the existing ECCO2R system. The strength of this article lies in its review scope, which focuses on the commercial ECCO2R therapy in the market based on membrane lung and current investigation to improve the efficiency of the ECCO2R system, in terms of surface modification by carbonic anhydrase (CA) immobilization technique and respiratory electrodialysis (R-ED). Our methodology approach involves the identification of relevant published literature from PubMed and Web of Sciences search engine using the terms Extracorporeal Carbon Dioxide Removal (ECCO2R), Extracorporeal life support, by combining terms between ECCO2R and CA and also ECCO2R with R-ED. This identification only limits articles in English language. Overall, several commercial ECCO2R systems are known and proven safe to be used in patients in terms of efficiency, safety and risk of complication. In addition, CA-modified hollow fiber for membrane lung and R-ED are proven to have good potential to be applied in conventional ECCO2R design. The detailed technique and current progress on CA immobilization and R-ED development were also reviewed in this article.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links