Displaying all 10 publications

Abstract:
Sort:
  1. Mansur SA, Mieczkowska A, Bouvard B, Flatt PR, Chappard D, Irwin N, et al.
    J. Cell. Physiol., 2015 Dec;230(12):3009-18.
    PMID: 26016732 DOI: 10.1002/jcp.25033
    Type 1 diabetes mellitus is associated with a high risk for bone fractures. Although bone mass is reduced, bone quality is also dramatically altered in this disorder. However, recent evidences suggest a beneficial effect of the glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) pathways on bone quality. The aims of the present study were to conduct a comprehensive investigation of bone strength at the organ and tissue level; and to ascertain whether enzyme resistant GIP or GLP-1 mimetic could be beneficial in preventing bone fragility in type 1 diabetes mellitus. Streptozotocin-treated mice were used as a model of type 1 diabetes mellitus. Control and streptozotocin-diabetic animals were treated for 21 days with an enzymatic-resistant GIP peptide ([D-Ala(2) ]GIP) or with liraglutide (each at 25 nmol/kg bw, ip). Bone quality was assessed at the organ and tissue level by microCT, qXRI, 3-point bending, qBEI, nanoindentation, and Fourier-transform infrared microspectroscopy. [D-Ala2]GIP and liraglutide treatment did prevent loss of whole bone strength and cortical microstructure in the STZ-injected mice. However, tissue material properties were significantly improved in STZ-injected animals following treatment with [D-Ala2]GIP or liraglutide. Treatment of STZ-diabetic mice with [D-Ala(2) ]GIP or liraglutide was capable of significantly preventing deterioration of the quality of the bone matrix. Further studies are required to further elucidate the molecular mechanisms involved and to validate whether these findings can be translated to human patients.
  2. Pingguan-Murphy B, El-Azzeh M, Bader DL, Knight MM
    J. Cell. Physiol., 2006 Nov;209(2):389-97.
    PMID: 16883605
    Mechanical loading modulates cartilage homeostasis through the control of matrix synthesis and catabolism. However, the mechanotransduction pathways through which chondrocytes detect different loading conditions remain unclear. The present study investigated the influence of cyclic compression on intracellular Ca2+ signalling using the well-characterised chondrocyte-agarose model. Cells labelled with Fluo4 were visualised using confocal microscopy following a period of 10 cycles of compression between 0% and 10% strain. In unstrained agarose constructs, not subjected to cyclic compression, a subpopulation of approximately 45% of chondrocytes exhibited spontaneous global Ca2+ transients with mean transient rise and fall times of 19.4 and 29.4 sec, respectively. Cyclic compression modulated global Ca2+ signalling by increasing the percentage of cells exhibiting Ca2+ transients (population modulation) and/or reducing the rise and fall times of these transients (transient shape modulation). The frequency and strain rate of compression differentially modulated these Ca2+ signalling characteristics providing a potential mechanism through which chondrocytes may distinguish between different loading conditions. Treatment with apyrase, gadolinium and the P2 receptor blockers, suramin and basilen blue, significantly reduced the percentage of cells exhibiting Ca2+ transients following cyclic compression, such that the mechanically induced upregulation of Ca2+ signalling was completely abolished. Thus cyclic compression appears to activate a purinergic pathway involving the release of ATP followed by the activation of P2 receptors causing a combination of extracellular Ca2+ influx and intracellular Ca2+ release. Knowledge of this fundamental cartilage mechanotransduction pathway may lead to improved therapeutic strategies for the treatment of cartilage damage and disease.
  3. Choi JR, Yong KW, Choi JY
    J. Cell. Physiol., 2018 Mar;233(3):1913-1928.
    PMID: 28542924 DOI: 10.1002/jcp.26018
    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair.
  4. Wadhwa R, Aggarwal T, Malyla V, Kumar N, Gupta G, Chellappan DK, et al.
    J. Cell. Physiol., 2019 08;234(10):16703-16723.
    PMID: 30912142 DOI: 10.1002/jcp.28482
    Chronic obstructive pulmonary disease accounts as the leading cause of mortality worldwide prominently affected by genetic and environmental factors. The disease is characterized by persistent coughing, breathlessness airways inflammation followed by a decrease in forced expiratory volume1 and exacerbations, which affect the quality of life. Determination of genetic, epigenetic, and oxidant biomarkers to evaluate the progression of disease has proved complicated and challenging. Approaches including exome sequencing, genome-wide association studies, linkage studies, and inheritance and segregation studies played a crucial role in the identification of genes, their pathways and variation in genes. This review highlights multiple approaches for biomarker and gene identification, which can be used for differential diagnosis along with the genome editing tools to study genes associated with the development of disease and models their function. Further, we have discussed the approaches to rectify the abnormal gene functioning of respiratory tissues and various novel gene editing techniques like Zinc finger nucleases (ZFN), transcription activator-like effector nucleases (TALEN), and clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9).
  5. Tajfard M, Tavakoly Sany SB, Avan A, Latiff LA, Rahimi HR, Moohebati M, et al.
    J. Cell. Physiol., 2019 07;234(7):10289-10299.
    PMID: 30548615 DOI: 10.1002/jcp.27945
    Serum high-sensitivity C-reactive protein (hs-CRP) is predictive of coronary artery disease (CAD). The aim of this study was to examine the possible association of hs-CRP with presence and severity of CAD and traditional CAD risk factors. This case-control study was carried out on 2,346 individuals from September 2011 to May 2013. Of these 1,187 had evidence of coronary disease, and were subject to coronary angiography, and the remainder were healthy controls (n = 1,159). Characteristics were determined using standard laboratory techniques and serum Hs-CRP levels were estimated using enzyme-linked immunosorbent assay (ELISA) kits, and severity of CAD was assessed according to the score of obstruction in coronary artery. Serum hs-CRP levels were higher in those with severe coronary disease, who had stenosis ≥ 50% stenosis of at least one coronary artery (all p 
  6. Fani M, Rezayi M, Meshkat Z, Rezaee SA, Makvandi M, Abouzari-Lotf E, et al.
    J. Cell. Physiol., 2019 08;234(8):12433-12441.
    PMID: 30633358 DOI: 10.1002/jcp.28087
    BACKGROUND: Human T-lymphotropic virus Type 1 (HTLV-1) is a retrovirus that is endemic in some regions of the world. It is known to cause several diseases like adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). Serology and molecular methods have been used to detect this virus. Of these, enzyme-linked immunosorbent assay (ELISA) is used as a primary screening method and this is usually followed by western blotting (WB) and polymerase chain reaction (PCR) methods as confirmatory tests. We conducted a systematic review of the different techniques used in the diagnosis of HTLV-1 infection.

    MATERIALS AND METHODS: Our search was limited to original papers in the English language from 2010 to 2018 using several databases including Pubmed, Scopus, Google Scholar, Iranmedex, and Scientific Information Database. A manual search of references provided in the included papers was also performed.

    RESULTS: Of 101 electronically searched citations, 43 met the inclusion criteria. ELISA is commonly used for qualitative and screening detection, and WB and PCR techniques are used to confirm infection.

    CONCLUSION: Among all the reported methods for detection of HTLV-1, only serological and molecular tests are used as the most common technical assays for HTLV-1. The ELISA assay, without a confirmatory test, has several limitations and affect the accuracy of the results. Owing to the prevalence of HTLV-1 and limitations of the current detection methods, further evaluation of the accuracy of these methods is needed. There are new opportunities for applying novel technological advances in microfluidics, biosensors, and lab-on-a-chip systems to perform HTLV-1 diagnostics.

  7. Wong KK, Banham AH, Yaacob NS, Nur Husna SM
    J. Cell. Physiol., 2019 Feb 02.
    PMID: 30710353 DOI: 10.1002/jcp.28168
    Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
  8. Ahmad S, Valli H, Smyth R, Jiang AY, Jeevaratnam K, Matthews HR, et al.
    J. Cell. Physiol., 2019 04;234(4):3921-3932.
    PMID: 30146680 DOI: 10.1002/jcp.27183
    Peroxisome proliferator-activated receptor-γ coactivator-1 deficient (Pgc-1β-/- ) murine hearts model the increased, age-dependent, ventricular arrhythmic risks attributed to clinical conditions associated with mitochondrial energetic dysfunction. These were accompanied by compromised action potential (AP) upstroke rates and impaired conduction velocities potentially producing arrhythmic substrate. We tested a hypothesis implicating compromised Na+ current in these electrophysiological phenotypes by applying loose patch-clamp techniques in intact young and aged, wild-type (WT) and Pgc-1β-/- , ventricular cardiomyocyte preparations for the first time. This allowed conservation of their in vivo extracellular and intracellular conditions. Depolarising steps elicited typical voltage-dependent activating and inactivating inward Na+ currents with peak amplitudes increasing or decreasing with their respective activating or preceding inactivating voltage steps. Two-way analysis of variance associated Pgc-1β-/- genotype with independent reductions in maximum peak ventricular Na+ currents from -36.63 ± 2.14 (n = 20) and -35.43 ± 1.96 (n = 18; young and aged WT, respectively), to -29.06 ± 1.65 (n = 23) and -27.93 ± 1.63 (n = 20; young and aged Pgc-1β-/- , respectively) pA/μm2 (p 
  9. Rajendran P, Alzahrani AM, Hanieh HN, Kumar SA, Ben Ammar R, Rengarajan T, et al.
    J. Cell. Physiol., 2019 12;234(12):21485-21492.
    PMID: 31144309 DOI: 10.1002/jcp.28895
    Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.
  10. Panahi M, Rahimi B, Rahimi G, Yew Low T, Saraygord-Afshari N, Alizadeh E
    J. Cell. Physiol., 2020 Apr 02.
    PMID: 32239727 DOI: 10.1002/jcp.29660
    Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links