Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Park S, Jalaludin I, Hwang H, Ko M, Adelipour M, Hwan M, et al.
    PMID: 37480686 DOI: 10.1016/j.jchromb.2023.123828
    In recent years, extracellular vesicles (EVs) have gained attention for their potential as biomarkers for the early diagnosis and treatment of various diseases. Traditionally, EV isolation has relied exclusively on ultracentrifugation. However, alternative enrichment methods such as size-exclusion chromatography (SEC) and polyethylene glycol-based precipitation have been introduced. This study utilized SEC as a characterization tool to assess the efficiency of EV isolation. Urinary EVs isolated from human urine using centrifugation (40,000 × g) were analyzed using an SEC column with a pore size of 1000 Å, an inner diameter of 7.8 mm, and a length of 300 mm. The EVs were detected sequentially using UV (280 nm) and fluorescence (λex/em = 550 nm/565 nm); the EVs were observed at approximately 6 min, while the proteins were observed at approximately 12 min. The repeated centrifugation enrichment steps resulted in an increase in EV peaks and a decrease in protein peaks. SEC analysis of the enriched EV samples confirmed that a four-cycle repetition of centrifugation is necessary for successful EV enrichment and removal of non-EV proteins from 40 mL of human urine.
  2. Alshishani A, Salhimi SM, Saad B
    PMID: 29241085 DOI: 10.1016/j.jchromb.2017.12.013
    A new salting-out assisted liquid-liquid extraction (SALLE) sample preparation method for the determination of the polar anti-diabetic biguanide drugs (metformin, buformin and phenformin) in blood plasma, urine and lake water samples were developed. The SALLE was performed by mixing samples (plasma (0.2mL), urine or lake water (1.0mL)) with acetonitrile (0.4mL for plasma, 0.5mL for urine or lake water), sodium hydroxide powder was then added for the phase separation. The effects of type of salting-out reagent, type of extraction solvent, volumes of acetonitrile and sample, amount of sodium hydroxide, vortexing and centrifugation times on the extraction efficiency were investigated. The upper layer, containing the biguanides, was directly injected into a HPLC unit using ZIC-HILIC column (150mm×2.1mm×3.5μm) and was detected at 236nm. The method was validated and calibration curves were linear with r2>0.99 over the range of 20-2000μgL-1for plasma and 5-2000μgL-1for urine and lake water samples. The limits of detection were in the range (3.8-5.6)μgL-1, (0.8-1.5)μgL-1and (0.3-0.8)μgL-1for plasma, urine and lake water, respectively. The accuracies in the three matrices were within 87.3-103%, 87.4-109%, 82.2-109% of the nominal concentration for metformin, buformin and phenformin, respectively. The relative standard deviation for inter- and intra -day precision were in the range of 1.0-17% for all analytes in the three matrices.
  3. Rohawi NS, Ramasamy K, Agatonovic-Kustrin S, Lim SM
    PMID: 29894935 DOI: 10.1016/j.jchromb.2018.06.009
    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R2) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics.
  4. Chen KH, Lee SY, Show PL, Hong SC, Chang YK
    J Chromatogr B Analyt Technol Biomed Life Sci, 2018 Nov 15;1100-1101:65-75.
    PMID: 30292951 DOI: 10.1016/j.jchromb.2018.09.039
    Dye-ligand affinity chromatography in a stirred fluidized bed has been developed for the rapid recovery of malate dehydrogenase (MDH) from highly turbid baker's yeast cell homogenate in a single step. The most suitable dye, namely Reactive Orange 4, in its optimal immobilized concentration of 8.78 mg/mL was immobilized onto high-density STREAMLINE matrix. To further examine optimal adsorption and elution conditions, the enzyme recovery operation was carried out using unclarified cell homogenates in stirred fluidized bed system. Aiming to develop a non-specific eluent, namely NaCl, to effectively elute the MDH adsorbed, direct recovery of MDH from highly turbid cell homogenate (50% w/v) in a stirred fluidized bed adsorption system was performed. The proposed system successfully achieved a recovery yield of 73.6% and a purification factor of 73.5 in a single step by using 0.6 M NaCl as an eluent at a high liquid velocity of 200 cm/h.
  5. Yan B, Huang ZA, Yahaya N, Chen DDY
    PMID: 32531643 DOI: 10.1016/j.jchromb.2020.122216
    Enantioselective analysis is critically important in the pharmaceutical and agricultural industries. However, most of the methods reported were developed for the analysis of pure racemates acquired from chemical synthesis or purification. Direct analysis of chiral enantiomers in complex matrices has rarely been reported. This work demonstrated capillary electrophoresis-mass spectrometry (CE-MS) for the enantioselective analysis of botanical drugs for the first time, using a widely used botanical drug, Corydalis Rhizoma, as an example. The method was used for the simultaneous enantioselective analysis of dl-tetrahydropalmatine and (RS)-tetrahydroberberine (canadine) in Corydalis Rhizoma extract. Using (2-hydroxypropyl)-β-cyclodextrin as the chiral selector, a partial filling technique was used to avoid signal suppression and contamination of the MS detector. Post column organic modifier was used to assist with ionization in the flow through microvial CE-MS interface, therefore, organic solvents was not used in the background electrolyte. The completely aqueous background electrolyte contributed to better chiral separations. The CE-MS method established here can directly determine the analytes in their complex matrix without any pre-purification steps, while also offering high sensitivity and low operational costs (including sample, chiral selector and solvent). In the method validation process, good linearity (r > 0.993), sensitivity and accuracy (recoveries within 89.1-110.0%) were demonstrated. The CE-MS technique was shown to be able to provide good selectivity for the simultaneous chiral separation of multiple pairs of enantiomers in complex matrices.
  6. Loh GOK, Wong EYL, Tan YTF, Lee YL, Pang LH, Chin MC, et al.
    PMID: 32905988 DOI: 10.1016/j.jchromb.2020.122337
    A simple, rapid, sensitive, and reproducible liquid chromatography-tandem mass spectrometry method was developed to determine sitagliptin in human plasma. Diphenhydramine HCl was used as internal standard (IS). The chromatographic separation was achieved using Agilent Poroshell 120 EC-C18 - Fast LC column (100 × 2.1mmID, 2.7) fitted with UHPLC Guard Poroshell 120 EC-C18 (5 × 2.1mmID, 2.7 µm). The mobile phase consisted of 0.1% v/v formic acid and methanol (45:55, v/v) run at a flow rate of 0.45 mL/min at 30 °C. Methanol produced relatively cleaner plasma sample as deproteinization agent. Polytetrafluoroethylene membrane was preferred over nylon membrane as the former produced clear plasma samples. The standard calibration curve was linear over the concentration range of 5-500.03 ng/mL. The within-run precision was 0.53-7.12% and accuracy 87.09-105.05%. The between-run precision was 4.74-11.68% and accuracy 95.02-97.36%. The extended run precision was 3.60-6.88% and accuracy 93.18-95.82%. The recovery of analyte and IS was consistent. Sitagliptin in plasma was stable at benchtop (short term) for 24 h, in autosampler tray for 48 h, in instrumentation room for 48 h (post-preparative), after 7 freeze-thaw cycles (-20 ± 10 °C), and 62 days in the freezer (-20 ± 10 °C). Both sitagliptin (analyte) and IS stock solutions were stable for 62 days when kept at room temperature (25 ± 4 °C) and in chiller (2-8 °C). The validated method was successfully applied to a bioequivalence study of two sitagliptin formulations involving 26 healthy Malaysian volunteers.
  7. Mohsin AZ, Sukor R, Selamat J, Meor Hussin AS, Ismail IH, Jambari NN, et al.
    PMID: 32971369 DOI: 10.1016/j.jchromb.2020.122380
    The main challenges in the purification of αS2-casein are due to the low quantity in milk and high homology with other casein subunits, i.e., αS1-casein, β-casein, and κ-casein. To overcome these challenges, the aim of this study was to develop a two-step purification to isolate native αS2-casein in goat milk from five different breeds; British Alpine, Jamnapari, Saanen, Shami, and Toggenburg. The first step of the purification was executed by anion-exchange chromatography under optimal elution conditions followed by size exclusion chromatography. Tryptic peptides from in-gel digestion of purified αS2-casein were sequenced and analyzed by LC-ESI-MS/MS. From 1.05 g of whole casein, the highest yield of αS2-casein (6.7 mg/mL) was obtained from Jamnapari and the lowest yield (2.2 mg/mL) was from Saanen. A single band of pure αS2-casein was observed on SDS-PAGE for all breeds. The αS2-casein showed coverage percentage of amino acid sequence from 76.68 to 92.83%. The two-step purification process developed herein was successfully applied for isolating native αS2-casein from goat milk with high purity, which will allow for future in vitro studies to be conducted on this protein.
  8. Aziz NFHA, Abbasiliasi S, Ng HS, Phapugrangkul P, Bakar MHA, Tam YJ, et al.
    J Chromatogr B Analyt Technol Biomed Life Sci, 2017 Jun 15;1055-1056:104-112.
    PMID: 28458127 DOI: 10.1016/j.jchromb.2017.04.029
    The partitioning of β-mannanase derived from Bacillus subtilis ATCC 11774 in aqueous two-phase system (ATPS) was studied. The ATPS containing different molecular weight of polyethylene glycol (PEG) and types of salt were employed in this study. The PEG/salt composition for the partitioning of β-mannanase was optimized using response surface methodology. The study demonstrated that ATPS consists of 25% (w/w) of PEG 6000 and 12.52% (w/w) of potassium citrate is the optimum composition for the purification of β-mannanase with a purification fold (PF) of 2.28 and partition coefficient (K) of 1.14. The study on influences of pH and crude loading showed that ATPS with pH 8.0 and 1.5% (w/w) of crude loading gave highest PF of 3.1. To enhance the partitioning of β-mannanase, four ionic liquids namely 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim]BF4), 1-butyl-3-methylimidazolium bromide ([Bmim]Br), 1-ethyl-3-methylimidazolium bromide ([Emim]Br) was added into the system as an adjuvant. The highest recovery yield (89.65%) was obtained with addition of 3% (w/w) of [Bmim]BF4. The SDS-PAGE analysis revealed that the β-mannanase was successfully recovered in the top phase of ATPS with the molecular size of 36.7kDa. Therefore, ATPS demonstrated a simple and efficient approach for recovery and purification of β-mannanase from fermentation broth in one single-step strategy.
  9. Lim WY, Goh BT, Khor SM
    PMID: 28683395 DOI: 10.1016/j.jchromb.2017.06.040
    Clinicians, working in the health-care diagnostic systems of developing countries, currently face the challenges of rising costs, increased number of patient visits, and limited resources. A significant trend is using low-cost substrates to develop microfluidic devices for diagnostic purposes. Various fabrication techniques, materials, and detection methods have been explored to develop these devices. Microfluidic paper-based analytical devices (μPADs) have gained attention for sensing multiplex analytes, confirming diagnostic test results, rapid sample analysis, and reducing the volume of samples and analytical reagents. μPADs, which can provide accurate and reliable direct measurement without sample pretreatment, can reduce patient medical burden and yield rapid test results, aiding physicians in choosing appropriate treatment. The objectives of this review are to provide an overview of the strategies used for developing paper-based sensors with enhanced analytical performances and to discuss the current challenges, limitations, advantages, disadvantages, and future prospects of paper-based microfluidic platforms in clinical diagnostics. μPADs, with validated and justified analytical performances, can potentially improve the quality of life by providing inexpensive, rapid, portable, biodegradable, and reliable diagnostics.
  10. Aziz MY, Hoffmann KJ, Ashton M
    PMID: 28863865 DOI: 10.1016/j.jchromb.2017.06.035
    PURPOSE: This study aimed to develop a sensitive, quantitative assay for the antimalarial piperaquine (PQ) and its metabolites M1 and M2 in human plasma.

    RESULTS: Analytes were gradiently separated on a C18 column and detected with a Sciex API 4000 MS/MS with an ESI source operated in the positive ion mode with deuterated PQ as internal standard. The response was linear in the range 3.9-2508nM with a runtime of 7.0min per sample. The method was applied to clinical samples from healthy volunteers.

    CONCLUSION: This LC-MS/MS method for the simultaneous quantitation of PQ and two of its metabolites in plasma may prove helpful for assessment of metabolite safety issues in vivo.

  11. Loh GOK, Wong EYL, Tan YTF, Ong LM, Ng RS, Wee HC, et al.
    PMID: 33429127 DOI: 10.1016/j.jchromb.2020.122517
    A simple, fast and sensitive LC-MS/MS method was developed to quantify terazosin in human plasma. The mobile phase consisted of acetonitrile-0.1% (v/v) formic acid (70:30, v/v). Prazosin was used as internal standard (IS). As deproteinization agent, acetonitrile produced a clean sample. A higher response intensity with more symmetrical peak was obtained using Agilent Poroshell 120 EC-C18 - Fast LC column (100 × 2.1mmID, 2.7 μm) compared with Kinetex XB-C18 (100 × 2.1 mm, 2.6 µm) column. The response of terazosin and IS were approximately two times in citrate phosphate dextrose (CPD) plasma compared with dipotassium ethylenediaminetetraacetic acid (K2EDTA) plasma. Plasma calibration curve was linear from 1.0 to 100.0 ng/mL, with coefficient of determination r2 ≥ 0.99. The within-run and between-run precision values (CV, %) were <5.2% and <7.8%, while accuracy values were 102.8-112.7% and 103.4-112.2%. The extended run accuracy was 98.6-102.8% and precision (CV, %) 4.3-10.4%. The recovery of analyte was >98% and IS >94%. Terazosin in plasma kept at benchtop was stable for 24 h, in autosampler tray for 48 h, in instrumentation room for 48 h, for 7 freeze-thaw cycles and in freezer for 140 days. Terazosin and IS stock standard solutions were stable for 140 days at room temperature and in the chiller. The high throughput method was successfully utilized to measure 935 samples in a bioequivalence study of terazosin.
  12. Man F, Choo CY
    PMID: 28869873 DOI: 10.1016/j.jchromb.2017.08.037
    Bruceines D and E are quassinoids from seeds of Brucea javanica (L.) Merr. exhibiting hypoglycemia effect. The crude drug is used as a traditional medicine by diabetes patients. The aim of this study is to understand the bioavailability and pharmacokinetics of both the bruceines D & E. A rapid and sensitive HPLC-MS/MS method was developed and validated for the quantification of both quassinoids, bruceines D & E in rat plasma. Both the bruceines D & E were separated with the Zorbax SBC-18 column with gradient elution and mobile phase system of acetonitrile and deionized water with 0.1% formic acid at a flow rate of 0.5mL/min. Analytes were detected in multiple reaction monitoring (MRM) mode with electrospray positive ionization. The quassinoids, namely bruceines D & E were detected with transitions of m/z 411.2→393.2 and m/z 395.2→377.2, respectively. Another quassinoid, eurycomanone was used as the internal standard with transition of m/z 409.2→391.2. The method was validated and conformed to the regulatory requirements. The validated method was applied to pharmacokinetic and bioavailability studies in rats. The pharmacokinetic study indicated both bruceine D and E were rapidly absorbed into the circulation system and reached its peak concentration at 0.54±0.34h and 0.66±0.30h, respectively. Bruceine E was eliminated slower than Bruceine D with t1/2 value almost increased two-fold compared to Bruceine D. In conclusion, a rapid, selective and sensitive HPLC-MS/MS method was developed for the simultaneous determination of both the bruceines D and E in rat plasma. Both bruceines D and E displayed poor oral bioavailability.
  13. Murugaiyah V, Chan KL
    PMID: 17261384
    A simple analytical method using HPLC with fluorescence detection was developed for the simultaneous determination of four lignans, phyllanthin (1), hypophyllanthin (2), phyltetralin (3) and niranthin (4) from Phyllanthus niruri L. in plasma. The method recorded limits of detection for 1, 2, 3 and 4 as 1.22, 6.02, 0.61 and 1.22 ng/ml, respectively, at a signal-to-noise ratio of 5:1 whereas their limits of quantification were 4.88, 24.41, 4.88 and 9.76 ng/ml, respectively, at a signal-to-noise ratio of 12:1. These values were comparable to those of other sensitive methods such as gas chromatography-mass spectrometry (GC-MS), high-performance liquid chromatography-MS (HPLC-MS) and HPLC-electrochemical detection (HPLC-ECD) for the analysis of plasma lignans. A further advantage over known methods was its simple protocol for sample preparation. The within-day and between-day accuracies for the analysis of the four lignans were between 87.69 and 110.07% with precision values below 10.51%. Their mean recoveries from extraction were between 91.39 and 114.67%. The method was successfully applied in the pharmacokinetic study of lignans in rats. Following intravenous administration, the lignans were eliminated slowly from the body with a mean clearance of 0.04, 0.01, 0.03 and 0.02 l/kg h and a mean half-life of 3.56, 3.87, 3.35 and 4.40 h for 1, 2, 3 and 4, respectively. Their peak plasma concentration upon oral administration was 0.18, 0.56, 0.12 and 0.62 microg/ml, respectively, after 1h. However, their absorption was incomplete with a calculated absolute oral bioavailability of 0.62, 1.52, 4.01 and 2.66% for 1, 2, 3 and 4, respectively.
  14. Man CN, Gam LH, Ismail S, Lajis R, Awang R
    PMID: 16908224
    Nicotine is a major addictive compound in cigarette. Its smoke is rapidly and extensively metabolized to several metabolites in human. Cotinine as a major metabolite of nicotine is commonly used as a biomarker to determine active and passive smokers. Cotinine has a longer half-life ( approximately 20 h) compared to nicotine ( approximately 2h). A simple, sensitive, rapid and high throughput GC-MS method was developed for simultaneous quantification of urinary nicotine and cotinine in passive and active smokers. In the sample preparation method, the analytes and internal standard were first basified and followed by liquid-liquid extraction. Upon completion, anhydrous sodium sulphate was added to the solvent mixture to trap moistures. The clear extract obtained was directly injected into GC-MS, operating under selective ion monitoring (SIM) mode. Calibration curves in the range of 0.5-5000 ng/mL of the analytes in urine matrix were established with linear correlation coefficients (r(2)) greater than 0.997. The limit of detection for both nicotine and cotinine were 0.20 ng/mL. The mean recoveries for nicotine and cotinine were 93.0 and 100.4%, respectively. The within- and between-assay accuracies were between 2.1 and 7.9% for nicotine and between 0.7 and 11.1% for cotinine. Within- and between-assay precisions of 3.3-9.5% for nicotine and 3.4-9.8% for cotinine were also achieved. The method can be used in routine assessment and monitoring of active smoking and exposure to environmental tobacco smoke. The applicability of the assay was demonstrated in a small-scale comparison study between smokers and non-smokers.
  15. Ramanathan S, Karupiah S, Nair NK, Olliaro PL, Navaratnam V, Wernsdorfer WH, et al.
    PMID: 16046285
    A new approach using a simple solid-phase extraction technique has been developed for the determination of pyronaridine (PND), an antimalarial drug, in human plasma. After extraction with C18 solid-phase sorbent, PND was analyzed using a reverse phase chromatographic method with fluorescence detection (at lambda(ex)=267 nm and lambda(em)=443 nm). The mean extraction recovery for PND was 95.2%. The coefficient of variation for intra-assay precision, inter-assay precision and accuracy was less than 10%. The quantification limit with fluorescence detection was 0.010 microg/mL plasma. The method described herein has several advantages over other published methods since it is easy to perform and rapid. It also permits reducing both, solvent use and sample preparation time. The method has been used successfully to assay plasma samples from clinical pharmacokinetic studies.
  16. Loon YH, Wong JW, Yap SP, Yuen KH
    PMID: 15664346
    A simple liquid chromatographic method was developed for the simultaneous determination of flavonoids from Orthosiphon stamineus Benth, namely sinensitin, eupatorin and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone, in plasma. Prior to analysis, the flavonoids and the internal standard (naproxen) were extracted from plasma samples using a 1:1 mixture of ethyl acetate and chloroform. The detection and quantification limits for the three flavonoids were similar being 3 and 5 ng/ml, respectively. The within-day and between-day accuracy values, expressed as percentage of true values, for the three flavonoids were between 95 and 107%, while the corresponding precision, expressed as coefficients of variation, for the three flavonoids were less than 14%. In addition, the mean recovery values of the extraction procedure for all the flavonoids were between 92 and 114%. The calibration curves were linear over a concentration range of 5-4000 ng/ml. The present method was applied to analyse plasma samples obtained from a pilot study using rats in which the mean absolute oral bioavailability values for sinensitin, eupatorin and 3'-hydroxy-5,6,7,4'-tetramethoxyflavone was 9.4, 1.0 and 1.5%, respectively.
  17. Wong JW, Nisar UR, Yuen KH
    PMID: 14643517
    A sensitive and selective high-performance liquid chromatographic method was developed for the determination of itraconazole and its active metabolite, hydroxyitraconazole, in human plasma. Prior to analysis, both compounds together with the internal standard were extracted from alkalinized plasma samples using a 3:2 (v/v) mixture of 2,2,4-trimethylpentane and dichloromethane. The mobile phase comprised 0.02 M potassium dihydrogen phosphate-acetonitrile (1:1, v/v) adjusted to pH 3.0. Analysis was run at flow-rate of 0.9 ml/min with excitation and emission wavelengths set at 260 and 365 nm, respectively. Itraconazole was found to adsorb on glass or plastic tubes, but could be circumvented by prior treating the tubes using 10% dichlorodimethylsilane in toluene. Moreover, rinsing the injector port with acetonitrile helped to overcome any carry-over effect. This problem was not encountered with hydroxyitraconazole. The method was sensitive with limit of quantification of 3 ng/ml for itraconazole and 6 ng/ml for hydroxyitraconazole. The calibration curve was linear over a concentration range of 2.8-720 ng/ml for itraconazole and 5.6-720 ng/ml for the hydroxy metabolite. Mean recovery value of the extraction procedure for both compounds was about 85%, while the within-day and between-day coefficient of variation and percent error values of the assay method were all less than 15%. Hence, the method is suitable for use in pharmacokinetic and bioavailability studies of itraconazole.
  18. Ng BH, Yuen KH
    PMID: 12906917
    A simple and sensitive high-performance liquid chromatographic (HPLC) method using ultraviolet detection was developed for the determination of testosterone in human plasma. Testosterone and the internal standard, griseofulvin, were extracted from 0.50 ml plasma sample using a mixture of dichloromethane-2,2,4-trimethylpentane (3:2, v/v). The mobile phase, consisted of 0.02 M sodium dihydrogenphosphate-acetonitrile-methanol (51:47:2, v/v) adjusted to pH 3.1 and delivered to a C(18) analytical column (150 x 4.6 mm I.D., 4 microm particles) at a flow-rate of 1 ml/min while the detection wavelength was set at 240 nm with a sensitivity range of 0.005 a.u.f.s. The method has a quantification limit of 1.6 ng/ml. Recoveries of testosterone were all greater than 92% over the linear concentration range of 1.6-400 ng/ml while that of griseofulvin was approximately 95%. The within- and between-day RSD values were all less than 8% while the accuracy values ranged from 96.0 to 106.0% over the concentration range studied. The method was applied to the analysis of early morning plasma testosterone levels of 12 healthy human male volunteers. The levels were found to range from 3.1 to 8.4 ng/ml, within the normal range reported in the literature.
  19. Gam LH, Tham SY, Latiff A
    PMID: 12860026
    A confirmatory and quantitative HPLC-tandem mass spectrometry (MS-MS) method for human chorionic gonadotropin hormone (hCG) at concentrations as low as 5 IU/l following immunoaffinity extraction of the glycoprotein from urine was developed. The extraction method involved retention of urinary hCG in the immunoaffinity column via specific antigen-antibody interaction. A variety of eluents were then used to quantitatively elute hCG from the immunoaffinity column. Qualitative and quantitative analysis of hCG were undertaken using MS-MS by identifying the amino acid sequence of the marker peptide betaT5 obtained from hCG by tryptic digestion and the peak areas of three product ions b(6)(+), b(9)(+) and y(11)(+), respectively.
  20. Ling SS, Yuen KH, Barker SA
    PMID: 12450550
    A high-performance liquid chromatographic method with ultraviolet (UV) detection was developed for measuring cefotaxime in rat and human plasma. The method used direct injection of the plasma supernatant after deproteinization with 70% perchloric acid. Degradation of cefotaxime in acidic medium was retarded by adding phosphate buffer before centrifuging the sample. The mobile phase was 0.05 M aqueous ammonium acetate-acetonitrile-tetrahydrofuran (87:11:2, v/v) adjusted to pH 5.5. Analysis was run at a flow-rate of 1.0 ml/min, and a detection wavelength of 254 nm was used. The method has a quantification limit of 0.20 microgram/ml. The within- and between-day coefficients of variation and accuracy values were less than 8% and +/-3%, respectively, while the recovery values were greater than 87% over the concentration range tested (0.20-50 microgram/ml). The speed, sensitivity, specificity and reproducibility of this method make it particularly suitable for the routine determination of cefotaxime in human plasma. Moreover, only a relatively small sample plasma volume (100 microliter) is required, allowing this method to be applied to samples taken from neonates.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links