Displaying all 16 publications

Abstract:
Sort:
  1. Jayachandra S, D'Souza UJ
    J Environ Sci Health B, 2014;49(4):271-8.
    PMID: 24502214 DOI: 10.1080/03601234.2014.868287
    The objective of this research is to study the possible reproductive adverse effects of diazinon on rat offspring exposed in utero and during lactation. Twenty-four Sprague-Dawley female rats (10-12 week old) were randomly assigned to four groups, each consisting of six rats. Group 1 served as the control and these rats were given normal saline orally. Rats in groups 2, 3, and 4 were administered diazinon, dissolved in saline at 10, 15, 30 mg/ kg(-1) body weight, per oral, once daily, during mating, pregnancy and lactation. The male offsprings were examined at puberty and adulthood for body weight, testis weight, epididymis weight, sperm count, motility and morphology, pituitary-gonadal hormone levels. At 30 mg kg(-1) dose, the male offsprings showed a decrease in testicular weight, sperm count, motility, with an increase in abnormal sperm percentage and a decline in pituitary-gonadal hormones, at puberty. Upon attaining adulthood, there was a decrease in testicular weight, sperm count and motility with an increase in abnormal sperm percentage and a decrease in pituitary hormone level. There was evidence of some adverse reproductive effects on the male offspring at the 15 mg/ kg(-1) dose. Most of the adverse effects were irreversible and were evident at both puberty and adulthood in the offsprings, although a few parameters reverted to the normal growth pattern. Diazinon is a reproductive toxicant for male offsprings if exposed during prenatal and postnatal phases.
  2. Nourouzi MM, Chuah TG, Choong TS, Rabiei F
    J Environ Sci Health B, 2012;47(5):455-65.
    PMID: 22424071 DOI: 10.1080/03601234.2012.663603
    An artificial neural network (ANN) model was developed to simulate the biodegradation of herbicide glyphosate [2-(Phosphonomethylamino) acetic acid] in a solution with varying parameters pH, inoculum size and initial glyphosate concentration. The predictive ability of ANN model was also compared with Monod model. The result showed that ANN model was able to accurately predict the experimental results. A low ratio of self-inhibition and half saturation constants of Haldane equations (< 8) exhibited the inhibitory effect of glyphosate on bacteria growth. The value of K(i)/K(s) increased when the mixed inoculum size was increased from 10(4) to 10(6) bacteria/mL. It was found that the percentage of glyphosate degradation reached a maximum value of 99% at an optimum pH 6-7 while for pH values higher than 9 or lower than 4, no degradation was observed.
  3. Baharuddin MR, Sahid IB, Noor MA, Sulaiman N, Othman F
    J Environ Sci Health B, 2011;46(7):600-7.
    PMID: 21749249 DOI: 10.1080/03601234.2011.589309
    A cross-section analytical study was conducted to evaluate the risk of pesticide exposure to those applying the Class II pesticides 2,4-D and paraquat in the paddy-growing areas of Kerian, Perak, Malaysia. It investigated the influence of weather on exposure as well as documented health problems commonly related to pesticide exposure. Potential inhalation and dermal exposure for 140 paddy farmers (handlers of pesticides) were assessed. Results showed that while temperature and humidity affected exposure, windspeed had the strongest impact on pesticide exposure via inhalation. However, the degree of exposure to both herbicides via inhalation was below the permissible exposure limits set by United States National Institute of Occupational Safety and Health (NIOSH). Dermal Exposure Assessment Method (DREAM) readings showed that dermal exposure with manual spraying ranged from moderate to high. With motorized sprayers, however, the level of dermal exposure ranged from low to moderate. Dermal exposure was significantly negatively correlated with the usage of protective clothing. Various types of deleterious health effects were detected among users of manual knapsack sprayers. Long-term spraying activities were positively correlated with increasing levels of the gamma-glutamyl transpeptidase (GGT) liver enzyme. The type of spraying equipment, usage of proper protective clothing and adherence to correct spraying practices were found to be the most important factors influencing the degree of pesticide exposure among those applying pesticides.
  4. Sadegh-Zadeh F, Wahid SA, Seh-Bardan BJ, Othman R, Omar D
    J Environ Sci Health B, 2012;47(2):144-51.
    PMID: 22251214 DOI: 10.1080/03601234.2012.624481
    This study was carried out to determine the sorption-desorption, degradation and leaching of napropamide in selected Malaysian soils. The sorption capacities of the selected Malaysian soils for napropamide were the following in descending order: Linau > Teringkap > Gunung Berinchang > Jambu > Rudua > Baging soil. The results indicate that napropamide degradation decreased with increasing soil sorption capacity. Napropamide was leached out earlier in the Baging soil than the other soils. Overall, the application of napropamide in the selected Malaysian soils would not pose a threat to the environment except in soil with low organic matter and clay content and high hydraulic conductivity, such as the Baging soil.
  5. Muhamad HB, Ai TY, Sahid IB
    J Environ Sci Health B, 2008 Feb;43(2):134-40.
    PMID: 18246505 DOI: 10.1080/03601230701795072
    The purpose of this study was to develop a method for the determination of fluroxypyr (4-amino-3,5-dichloro-6-fluro2-pyridyloxyacetic acid) residue in palm oil namely crude palm oil (CPO) and crude palm kernel oil (CPKO). The method involves the extraction of the herbicide from the oil matrix followed by low temperature precipitation and finally quantification of the residues using the high performance liquid chromatography (HPLC). The extraction efficiency of the method was evaluated by conducting recovery studies. The recovery of fluroxypyr from the fortified CPO samples ranged from 78%-111% with the relative values for the coefficient of variation ranging from 1.4 to 8.6%. Furthermore, the recovery of fluroxypyr from the spiked CPKO samples ranged from 91-107% with the relative values for the coefficient of variation ranging from 0.6 to 4.5%. The minimum detection limit of fluroxypyr in CPO and CPKO was 0.05 microg/g. The method was used to determine fluroxypyr residues from the field-treated samples of CPO and CPKO. When fluroxypyr was used for weed control in oil palm plantations no residue was detected in CPO and CPKO irrespective of the sampling interval and the dosage applied at the recommended or double the manufacturer's recommended dosage.
  6. Khan MH, Ali S, Fakhru'l-Razi A, Alam Z
    J Environ Sci Health B, 2007 May;42(4):381-6.
    PMID: 17474017
    Cellulase production was carried out by solid state bioconversion (SSB) method using rice straw, a lignocellulosic material and agricultural waste, as the substrate of three Trichoderma spp. and Phanerochaete chrysosporium in lab-scale experiments. The results were compared to select the best fungi among them for the production of cellulase. Phanerochaete chrysosporium was found to be the best among these species of fungi, which produced the highest cellulase enzyme of 1.43 IU/mL of filter paper activity (FPase) and 2.40 IU/mL of carboxymethylcellulose activity (CMCase). The "glucosamine" and "reducing sugar" parameters were observed to evaluate the growth and substrate utilization in the experiments. In the case of Phanerochaete Chrysosporium, the highest glucosamine concentration was 1.60 g/L and a high concentration of the release of reducing sugar was measured as 2.58 g/L obtained on the 4th day of fermentation. The pH values were also recorded. The range of the pH was about 5.15 to 5.56 in the case of Phanerochaete Chrysosporium.
  7. Halimah M, Tan YA, Ismail BS
    J Environ Sci Health B, 2004;39(5-6):765-77.
    PMID: 15620085
    Four methods were developed for the analysis of fluroxypyr in soil samples from oil palm plantations. The first method involved the extraction of the herbicide with 0.05 M NaOH in methanol followed by purification using acid base partition. The concentrated material was subjected to derivatization and then cleaning process using a florisil column and finally analyzed by gas chromatography (GC) equipped with electron capture detector (ECD). By this method, the recovery of fluroxypyr from the spiked soil ranged from 70 to 104% with the minimum detection limit at 5 microg/kg. The second method involved solid liquid extraction of fluroxypyr using a horizontal shaker followed by quantification using high performance liquid chromatography (HPLC) equipped with UV detector. The recovery of fluroxypyr using this method, ranged from 80 to 120% when the soil was spiked with fluroxypyr at 0.1-0.2 microg/g soil. In the third method, the recovery of fluroxypyr was determined by solid liquid extraction using an ultrasonic bath. The recovery of fluroxypyr at spiking levels of 4-50 microg/L ranged from 88 to 98% with relative standard deviations of 3.0-5.8% with a minimum detection limit of 4 microg/kg. In the fourth method, fluroxypyr was extracted using the solid liquid extraction method followed by the cleaning up step with OASIS HLB (polyvinyl dibenzene). The recovery of fluroxypyr was between 91 and 95% with relative standard deviations of 4.2-6.2%, respectively. The limit of detection in method 4 was further improved to 1 pg/kg. When the weight of soil used was increased 4 fold, the recovery of fluroxypyr at spiking level of 1-50 microg/kg ranged from 82-107% with relative standard deviations of 0.5-4.7%.
  8. Ismail BS, Ngan CK
    J Environ Sci Health B, 2005;40(2):341-53.
    PMID: 15825685
    A comparison of dissipation of chlorothalonil, chlorpyrifos, and profenofos in a Malaysian agricultural soil between the field experiment and simulation by the PERSIST model was studied. A plot of sweet pea (Pisum sativum) from a farm in the Cameron Highlands was selected for the field experiment. The plot was treated with chlorothalonil, chlorpyrifos, and profenofos. Core soil collection was conducted according to the sampling schedule. Residues of the three pesticides were analyzed in the laboratory. Simulations of the three pesticides' persistency were also conducted using a computer-run software PERSIST. Generally, predicted data obtained using PERSIST were found to be high for the three pesticides except for one field measurement of chlorpyrifos. The predicted data for profenofos, which is the most mobile of the three pesticides tested, was not well matched with the observed data compared to chlorothalonil and chlorpyrifos.
  9. Halimah M, Tan YA, Aini K, Ismail BS
    J Environ Sci Health B, 2003 Jul;38(4):429-40.
    PMID: 12856925
    Improved methods for extraction and clean up of fluroxypyr residue in water have been established. Two methods of fluroxypyr extraction were used, namely, Direct Measurement of fluroxypyr and Concentration of fluroxypyr onto A Solid Phase Extraction (SPE) Adsorbent, followed by elution with solvent before determination of fluroxypyr. The recovery for Direct Measurement of fluroxypyr in water containing 8-100 microg L(-1), ranged from 86 to 110% with relative standard deviation of 0.7 to 2.15%. For the second method, three types of SPE were used, viz. C18, C18 end-capped and polyvinyl dibenzene (ISOLUTE ENV+). The procedure involved concentrating the analyte from fluroxypyr-spiked water at pH 3, followed by elution of the analyte with 4 mL of acentonitrile. The recovery of fluroxypyr from the spiked sample at 1 to 50 microg L(-1) after eluting through either C18 or C18 end-capped ranged from 40-64% (with relative standard deviation of 0.7 to 2.15) and 41-65% (with standard deviation of 1.52 to 11.9). The use of ISOLUTE ENV+, gave better results than the C18, C18 end-capped or the Direct Measurement Methods. The recovery and standard deviation of fluroxypyr from spiked water using ISOLUTE ENV+ ranged from 91-102% and 2.5 to 5.3, respectively.
  10. Ismail BS, Kalithasan K
    J Environ Sci Health B, 2003 Mar;38(2):133-46.
    PMID: 12617552
    Studies on persistence, mobility and the effect of repeated application of permethrin on its half-life were carried out under field conditions. The half-life of permethrin in the top 20 cm of the soil increased from 11.5 to 23.6 days as the application rates increased from 35 to 140 g ha(-1). Induced by heavier rainfall, more residues moved downward in trial 2 than in trial 1. Repeated applications enhanced degradation rates and mobility of permethrin in the soil. The residue level in the 0-5-cm layer was reduced at day 28 after 17 consecutive applications to a level lower than after 5 applications. The half-life of permethrin was reduced from 15.9 days to 11.2 days after 5 and 17 applications, respectively. The residue reached the 15-20 cm layer much earlier (approximately 3 days after treatment) in soil that received 17 applications as compared to those with two applications.
  11. Ismai BS, Enoma AO, Cheah UB, Lum KY, Malik Z
    J Environ Sci Health B, 2002 Jul;37(4):355-64.
    PMID: 12081027
    Laboratory studies utilizing radioisotopic techniques were conducted to determine the adsorption, desorption, and mobility of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxanthiepin3-oxide) and methamidophos (O,S-dimethyl phosphorothioate) in sandy loam and clay soils of the Cameron Highlands and the Muda rice-growing area, respectively. High Freundlich adsorption distribution coefficients [Kads(f)] for endosulfan (6.74 and 18.75) and low values for methamidophos (0.40 and 0.98) were obtained in the sandy loam and clay soils, respectively. The observed Koc values for endosulfan were 350.85 (sandy loam) and 1143.19 (clay) while Koc values of 20.92 (sandy loam) and 59.63 (clay) were obtained for methamidophos. Log Kow of 0.40 and 1.25 were calculated for endosulfan as well as -1.96 and -1.21 for methamidophos in the sandy loam and clay soils, respectively. Desorption was common to both pesticides but the desorption capacity of methamidophos from each soil type far exceeded that of endosulfan. Soil thin layer chromatography (TLC) and column studies showed that while methamidophos was very mobile in both soils, endosulfan displayed zero mobility in clay soil.
  12. Ismail BS, Azlizan BA
    J Environ Sci Health B, 2002 Jul;37(4):345-53.
    PMID: 12081026
    The persistence of metsulfuron-methyl (methyl 2-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]aminosul fonyl]benzoate) in nonautoclaved and autoclaved Selangor, Lating, and Serdang series soils incubated at different temperatures and with different moisture contents was investigated under laboratory conditions using cucumber (Cucumis sativus L.) as the bioassay species. Significant degradation of metsulfuron-methyl was observed in nonautoclaved soil compared with the autoclaved soil sample, indicating the importance of microorganisms in the breakdown process. At higher temperatures the degradation rate in nonautoclaved soil improved with increasing soil moisture content. In nonautoclaved Selangor, Lating and Serdang series soils, the half-life was reduced from 4.79 to 2.78 days, 4.9 to 3.5, and from 3.3 to 1.9 days, respectively, when the temperature was increased from 20 degrees to 30 degrees C at 80% field capacity. Similarly, in nonautoclaved soil, the half-life decreased with an increasing soil moisture from 20% to 80% at 30 degrees C in the three soils studied. In the autoclaved soil, the half-life values were slightly higher than those obtained in the nonautoclaved soils, perhaps indicating that the compound may be broken down by nonbiological processes. The fresh weight of the bioassay species was reduced significantly in Serdang series soil treated with metsulfuron-methyl at 0.1 ppm. However, the reduction in fresh weight of the seedlings was least in Lating series soil, followed by Selangor series soil.
  13. Syed MA, Arshad JH, Mat S
    J Environ Sci Health B, 1992 Aug;27(4):347-54.
    PMID: 1527358
    Paddy (unmilled rice), milled rice and maize-bound 14C residues were prepared using 14C-succinate-labelled malathion at 10 and 152 ppm. After 3 months, the bound residues accounted for 12%, 6.5% and 17.7% of the applied dose in paddy, milled rice and maize respectively in the grains treated at 10 ppm. The corresponding values for the 152 ppm were 16.6%, 8.5% and 18.8%. Rats fed milled rice - bound 14C-residues eliminated 61% of the 14C in the faeces and 28% in the urine. The corresponding percentages for paddy and maize were 72%, 9% and 53%, 41% respectively; indicating that bound residues from milled rice and maize were moderately bioavailable. When rice-bound malathion residues (0.65 ppm in feed) were administered to rats in a 5 week feeding study, no signs of toxicity were observed. Plasma and RBC cholinesterase activities were slightly inhibited: blood urea nitrogen was significantly elevated in the test animals. Other parameters examined showed no or marginal changes.
  14. Ismail BS, Kalithasan K
    J Environ Sci Health B, 2004 May;39(3):419-29.
    PMID: 15186031
    The adsorption, desorption, and mobility of permethrin in six tropical soils was determined under laboratory and greenhouse conditions. The six soils were selected from vegetable growing areas in Malaysia. Soil organic matter (OM) was positively correlated (r2 = 0.97) with the adsorption of permethrin. The two soils, namely, Teringkap 1 and Lating series with the highest OM (3.2 and 2.9%) released 32.5 and 30.8% of the adsorbed permethrin after four consecutive repetitions of the desorption process, respectively, compared to approximately 75.4% of the Gunung Berinchang soil with the lowest OM (1.0%) under the same conditions. The mobility of permethrin down the soil column was inversely correlated to the organic matter content of the soil. Permethrin residue penetrated only to the 10-15 cm zone in the Teringkap 1 soil with 3.2% OM but penetrated to a depth of more than 20 cm in the other soils. The Berinchang series soil with the lowest OM (1.0%) yielded leachate with 14.8% permethrin, the highest level in leachates from all the soils tested. Therefore, the possibility for permethrin to contaminate underground water may be greater in the presence of low organic matter content, which subsequently allows a higher percentage of permethrin to move downwards through the soil column.
  15. Al'Abri AM, Abdul Halim SN, Abu Bakar NK, Saharin SM, Sherino B, Rashidi Nodeh H, et al.
    J Environ Sci Health B, 2019;54(12):930-941.
    PMID: 31407615 DOI: 10.1080/03601234.2019.1652072
    This article demonstrates the first application of a copper-based porous coordination polymer (BTCA-P-Cu-CP) as a carbon paste electrode (CPE) modifier for the detection of malathion. The electrochemical behavior of BTCA-P-Cu-CP/CPE was explored using cyclic voltammetry (CV) while chrono-amperometry methods were applied for the analytical evaluation of the sensor performance. Under optimized conditions, the developed sensor exhibited high reproducibility, stability, and wide dynamic range (0.6-24 nM) with the limits of detection and sensitivity equal to 0.17 nM and 5.7 µAnMcm-1, respectively, based on inhibition signal measurement. Furthermore, the presence of common coexisting interfering species showed a minor change in signals (<4.4%). The developed sensor has been applied in the determination of malathion in spiked vegetable extracts. It exhibited promising results in term of fast and sensitive determination of malathion in real samples at trace level with recoveries of 91.0 to 104.4%. (RSDs < 5%, n = 3). A comparison of the two studied techniques showed that the HPLC technique is unable to detect malathion when the concentration is lower than 1.8 µM while 0.006 µM is detected with appropriate RSDs 0.2-5.2% (n = 3) by amperometric method. Due to the high sensitivity and selectivity, this new electrochemical sensor will be useful for monitoring trace malathion in real samples.
  16. Thanalechumi P, Mohd Yusoff AR, Yusop Z
    J Environ Sci Health B, 2019;54(4):294-302.
    PMID: 30729855 DOI: 10.1080/03601234.2018.1561057
    A newly developed electrochemical sensor for chlorothalonil based on nylon 6,6 film deposited onto screen printed electrode (SPE) with electrochemical modulation of pH at the electrode/solution interface was studied for the first time. Differential pulse cathodic stripping voltammetry (DPCSV) was used to carry out the electrochemical and analytical studies. Experimental parameters such as accumulation potential, initial potential, accumulation time and pH of Britton-Robinson buffer have been optimized. Chlorothalonil gave optimum analytical signal in a medium of 0.04 M Britton-Robinson buffer at pH 6.0. A well-defined reduction peak was observed, at Ep= -0.851 and -0.938 V vs. Ag/AgCl (3.0 M KCl) for both bare SPE and modified SPE, respectively. The peak currents of modified SPE were significantly increased as compared to bare SPE. At the modified SPE, a linear relationship between the peak current and chlorothalonil concentration was obtained in the range from 0.1 to 2.8 × 10-6 M with a detection limit of 1.53 × 10-8 M (S/N= 3). The practical applicability of the newly developed method has been demonstrated on analyses of real water samples. The newly developed sensor shows good reproducibility with RSD of 3.92%. The nylon 6,6 modified SPE showed itself as promising sensor with good selectivity for chlorothalonil determination.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links