Displaying all 4 publications

Abstract:
Sort:
  1. Ibrahim YKh, Tshen LT, Westaway KE, Cranbrook EO, Humphrey L, Muhammad RF, et al.
    J. Hum. Evol., 2013 Dec;65(6):770-97.
    PMID: 24210657 DOI: 10.1016/j.jhevol.2013.09.005
    Nine isolated fossil Pongo teeth from two cave sites in Peninsular Malaysia are reported. These are the first fossil Pongo specimens recorded in Peninsular Malaysia and represent significant southward extensions of the ancient Southeast Asian continental range of fossil Pongo during two key periods of the Quaternary. These new records from Peninsular Malaysia show that ancestral Pongo successfully passed the major biogeographical divide between mainland continental Southeast Asia and the Sunda subregion before 500 ka (thousand years ago). If the presence of Pongo remains in fossil assemblages indicates prevailing forest habitat, then the persistence of Pongo at Batu Caves until 60 ka implies that during the Last Glacial Phase sufficient forest cover persisted in the west coast plain of what is now Peninsular Malaysia at least ten millennia after a presumed corridor of desiccation had extended to central and east Java. Ultimately, environmental conditions of the peninsula during the Last Glacial Maximum evidently became inhospitable for Pongo, causing local extinction. Following post-glacial climatic amelioration and reforestation, a renewed sea barrier prevented re-colonization from the rainforest refugium in Sumatra, accounting for the present day absence of Pongo in apparently hospitable lowland evergreen rainforest of Peninsular Malaysia. The new teeth provide further evidence that Pongo did not undergo a consistent trend toward dental size reduction over time.
  2. Barker G, Barton H, Bird M, Daly P, Datan I, Dykes A, et al.
    J. Hum. Evol., 2007 Mar;52(3):243-61.
    PMID: 17161859
    Recent research in Europe, Africa, and Southeast Asia suggests that we can no longer assume a direct and exclusive link between anatomically modern humans and behavioral modernity (the 'human revolution'), and assume that the presence of either one implies the presence of the other: discussions of the emergence of cultural complexity have to proceed with greater scrutiny of the evidence on a site-by-site basis to establish secure associations between the archaeology present there and the hominins who created it. This paper presents one such case study: Niah Cave in Sarawak on the island of Borneo, famous for the discovery in 1958 in the West Mouth of the Great Cave of a modern human skull, the 'Deep Skull,' controversially associated with radiocarbon dates of ca. 40,000 years before the present. A new chronostratigraphy has been developed through a re-investigation of the lithostratigraphy left by the earlier excavations, AMS-dating using three different comparative pre-treatments including ABOX of charcoal, and U-series using the Diffusion-Absorption model applied to fragments of bones from the Deep Skull itself. Stratigraphic reasons for earlier uncertainties about the antiquity of the skull are examined, and it is shown not to be an 'intrusive' artifact. It was probably excavated from fluvial-pond-desiccation deposits that accumulated episodically in a shallow basin immediately behind the cave entrance lip, in a climate that ranged from times of comparative aridity with complete desiccation, to episodes of greater surface wetness, changes attributed to regional climatic fluctuations. Vegetation outside the cave varied significantly over time, including wet lowland forest, montane forest, savannah, and grassland. The new dates and the lithostratigraphy relate the Deep Skull to evidence of episodes of human activity that range in date from ca. 46,000 to ca. 34,000 years ago. Initial investigations of sediment scorching, pollen, palynomorphs, phytoliths, plant macrofossils, and starch grains recovered from existing exposures, and of vertebrates from the current and the earlier excavations, suggest that human foraging during these times was marked by habitat-tailored hunting technologies, the collection and processing of toxic plants for consumption, and, perhaps, the use of fire at some forest-edges. The Niah evidence demonstrates the sophisticated nature of the subsistence behavior developed by modern humans to exploit the tropical environments that they encountered in Southeast Asia, including rainforest.
  3. van Noordwijk MA, Utami Atmoko SS, Knott CD, Kuze N, Morrogh-Bernard HC, Oram F, et al.
    J. Hum. Evol., 2018 Dec;125:38-49.
    PMID: 30502896 DOI: 10.1016/j.jhevol.2018.09.004
    Orangutans (Pongo spp.) are reported to have extremely slow life histories, including the longest average interbirth intervals of all mammals. Such slow life history can be viable only when unavoidable mortality is kept low. Thus, orangutans' survivorship under natural conditions is expected to be extremely high. Previous estimates of orangutan life history were based on captive individuals living under very different circumstances or on small samples from wild populations. Here, we combine birth data from seven field sites, each with demographic data collection for at least 10 years (range 12-43 years) on wild orangutans to better document their life history. Using strict criteria for data inclusion, we calculated infant survival, interbirth intervals and female age at first reproduction, across species, subspecies and islands. We found an average closed interbirth interval of 7.6 years, as well as consistently very high pre-weaning survival for males and females. Female survival of 94% until age at first birth (at around age 15 years) was higher than reported for any other mammal species under natural conditions. Similarly, annual survival among parous females is very high, but longevity remains to be estimated. Current data suggest no major life history differences between Sumatran and Bornean orangutans. The high offspring survival is remarkable, noting that modern human populations seem to have reached the same level of survival only in the 20th century. The orangutans' slow life history illustrates what can be achieved if a hominoid bauplan is exposed to low unavoidable mortality. Their high survival is likely due to their arboreal and non-gregarious lifestyle, and has allowed them to maintain viable populations, despite living in low-productivity habitats. However, their slow life history also implies that orangutans are highly vulnerable to a catastrophic population crash in the face of drastic habitat change.
  4. Curnoe D, Datan I, Goh HM, Sauffi MS
    J. Hum. Evol., 2019 Feb;127:133-148.
    PMID: 30777354 DOI: 10.1016/j.jhevol.2018.12.008
    The skeletal remains of Pleistocene anatomically modern humans are rare in island Southeast Asia. Moreover, continuing doubts over the dating of most of these finds has left the arrival time for the region's earliest inhabitants an open question. The unique biogeography of island Southeast Asia also raises questions about the physical and cultural adaptations of early anatomically modern humans, especially within the setting of rainforest inhabitation. Within this context the Deep Skull from the West Mouth of the Niah Caves continues to figure prominently owing to its relative completeness and the greater certainty surrounding its geological age. Recovered along with this partial cranium in 1958 were several postcranial bones including a partial femur which until now has received little attention. Here we provide a description and undertake a comparison of the Deep Skull femur finding it to be very small in all of its cross-sectional dimensions. We note a number of size and shape similarities to the femora of Indigenous Southeast Asians, especially Aeta people from the Philippines. We estimate its stature to have been roughly 145-146 cm and body mass around 35 kg, confirming similarities to Aeta females. Its extreme gracility indicated by low values for a range of biomechanical parameters taken midshaft meets expectations for a very small (female) Paleolithic East Asian. Interestingly, the second moment of area about the mediolateral axis is enlarged relative to the second moment of area about the anteroposterior axis, which could potentially signal a difference in activity levels or lifestyle compared with other Paleolithic femora. However, it might also be the result of sexual dimorphism in these parameters as well as possibly reflecting changes associated with aging.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links