Displaying all 8 publications

Abstract:
Sort:
  1. Tan HY, Yong YK, Shankar EM, Paukovics G, Ellegård R, Larsson M, et al.
    J Immunol, 2016 05 15;196(10):4052-63.
    PMID: 27076678 DOI: 10.4049/jimmunol.1502203
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS.
  2. Ellegård R, Crisci E, Andersson J, Shankar EM, Nyström S, Hinkula J, et al.
    J Immunol, 2015 Aug 15;195(4):1698-704.
    PMID: 26157174 DOI: 10.4049/jimmunol.1500618
    Mucosa resident dendritic cells (DCs) may represent one of the first immune cells that HIV-1 encounters during sexual transmission. The virions in body fluids can be opsonized with complement factors because of HIV-mediated triggering of the complement cascade, and this appears to influence numerous aspects of the immune defense targeting the virus. One key attribute of host defense is the ability to attract immune cells to the site of infection. In this study, we investigated whether the opsonization of HIV with complement (C-HIV) or a mixture of complement and Abs (CI-HIV) affected the cytokine and chemokine responses generated by DCs, as well as their ability to attract other immune cells. We found that the expression levels of CXCL8, CXCL10, CCL3, and CCL17 were lowered after exposure to either C-HIV or CI-HIV relative to free HIV (F-HIV). DCs exposed to F-HIV induced higher cell migration, consisting mainly of NK cells, compared with opsonized virus, and the chemotaxis of NK cells was dependent on CCL3 and CXCL10. NK cell exposure to supernatants derived from HIV-exposed DCs showed that F-HIV induced phenotypic activation (e.g., increased levels of TIM3, CD69, and CD25) and effector function (e.g., production of IFNγ and killing of target cells) in NK cells, whereas C-HIV and CI-HIV did not. The impairment of NK cell recruitment by DCs exposed to complement-opsonized HIV and the lack of NK activation may contribute to the failure of innate immune responses to control HIV at the site of initial mucosa infection.
  3. Lewis RS, Noor SM, Fraser FW, Sertori R, Liongue C, Ward AC
    J Immunol, 2014 Jun 15;192(12):5739-48.
    PMID: 24835394 DOI: 10.4049/jimmunol.1301376
    Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.
  4. Chan SL, Ong TC, Gao YF, Tiong YS, Wang de Y, Chew FT, et al.
    J Immunol, 2008 Aug 15;181(4):2586-96.
    PMID: 18684949
    A high incidence of sensitization to Blomia tropicalis, the predominant house dust mite species in tropical regions, is strongly associated with allergic diseases in Singapore, Malaysia, and Brazil. IgE binding to the group 5 allergen, Blo t 5, is found to be the most prevalent among all B. tropicalis allergens. The NMR structure of Blo t 5 determined represents a novel helical bundle structure consisting of three antiparallel alpha-helices. Based on the structure and sequence alignment with other known group 5 dust mite allergens, surface-exposed charged residues have been identified for site-directed mutagenesis and IgE binding assays. Four charged residues, Glu76, Asp81, Glu86, and Glu91 at around the turn region connecting helices alpha2 and alpha3 have been identified to be involved in the IgE binding. Using overlapping peptides, we have confirmed that these charged residues are located on a major putative linear IgE epitope of Blo t 5 from residues 76-91 comprising the sequence ELKRTDLNILERFNYE. Triple and quadruple mutants have been generated and found to exhibit significantly lower IgE binding and reduced responses in skin prick tests. The mutants induced similar PBMC proliferation as the wild-type protein but with reduced Th2:Th1 cytokines ratio. Mass screening on a quadruple mutant showed a 40% reduction in IgE binding in 35 of 42 sera of atopic individuals. Findings in this study further stressed the importance of surface-charged residues on IgE binding and have implications in the cross-reactivity and use of Blo t 5 mutants as a hypoallergen for immunotherapy.
  5. Luo K, Chen Y, Wang F
    J Immunol, 2022 Feb 11.
    PMID: 35149533 DOI: 10.4049/jimmunol.2100595
    For a long time, how anti-inflammatory factors evolved was largely unknown. In this study, we chose a marine invertebrate, Litopenaeus vannamei, as a model and identified that shrimp mesencephalic astrocyte-derived neurotrophic factor (MANF) was an LPS-induced plasma protein, which exerted its anti-inflammatory roles on shrimp hemocytes by suppressing ERK phosphorylation and Dorsal expression. In addition, we demonstrated that shrimp MANF could be associated with a receptor protein tyrosine phosphatase (RPTP) to mediate negative regulation of ERK activation and Dorsal expression. More interestingly, shrimp RPTP-S overexpression in 293T cells could switch shrimp and human MANF-mediated ERK pathway activation to inhibition. In general, our results indicate that this conserved RPTP is the key component for extracellular MANF-mediated ERK pathway inhibition, which gives a possible explanation about why this neurotropic factor could both protect neuron cells from apoptosis and inhibit immune cell M1 activation in various species.
  6. Zheng Z, Aweya JJ, Bao S, Yao D, Li S, Tran NT, et al.
    J Immunol, 2021 12 01;207(11):2733-2743.
    PMID: 34670821 DOI: 10.4049/jimmunol.2100746
    Aquatic organisms have to produce proteins or factors that help maintain a stable relationship with microbiota and prevent colonization by pathogenic microorganisms. In crustaceans and other aquatic invertebrates, relatively few of these host factors have been characterized. In this study, we show that the respiratory glycoprotein hemocyanin is a crucial host factor that modulates microbial composition and diversity in the hepatopancreas of penaeid shrimp. Diseased penaeid shrimp (Penaeus vannamei), had an empty gastrointestinal tract with atrophied hepatopancreas, expressed low hemocyanin, and high total bacterial abundance, with Vibrio as the dominant bacteria. Similarly, shrimp depleted of hemocyanin had mitochondrial depolarization, increased reactive oxygen species (ROS) levels, and dysregulation of several energy metabolism-related genes. Hemocyanin silencing together with ROS scavenger (N-acetylcysteine) treatment improved microbial diversity and decreased Vibrio dominance in the hepatopancreas. However, fecal microbiota transplantation after hemocyanin knockdown could not restore the microbial composition in the hepatopancreas. Collectively, our data provide, to our knowledge, new insight into the pivotal role of hemocyanin in modulating microbial composition in penaeid shrimp hepatopancreas via its effect on mitochondrial integrity, energy metabolism, and ROS production.
  7. Nie J, Aweya JJ, Yu Z, Zhou H, Wang F, Yao D, et al.
    J Immunol, 2022 Aug 01;209(3):476-487.
    PMID: 35851542 DOI: 10.4049/jimmunol.2200078
    Although invertebrates' innate immunity relies on several immune-like molecules, the diversity of these molecules and their immune response mechanisms are not well understood. Here, we show that Penaeus vannamei hemocyanin (PvHMC) undergoes specific deacetylation under Vibrio parahaemolyticus and LPS challenge. In vitro deacetylation of PvHMC increases its binding capacity with LPS and antibacterial activity against Gram-negative bacteria. Lysine residues K481 and K484 on the Ig-like domain of PvHMC are the main acetylation sites modulated by the acetyltransferase TIP60 and deacetylase HDAC3. Deacetylation of PvHMC on K481 and K484 allows PvHMC to form a positively charged binding pocket that interacts directly with LPS, whereas acetylation abrogates the positive charge to decrease PvHMC-LPS attraction. Besides, V. parahaemolyticus and LPS challenge increases the expression of Pvhdac3 to induce PvHMC deacetylation. This work indicates that, during bacterial infections, deacetylation of hemocyanin is crucial for binding with LPS to clear Gram-negative bacteria in crustaceans.
  8. Yap JKY, Moriyama M, Iwasaki A
    J Immunol, 2020 Jul 15;205(2):307-312.
    PMID: 32493814 DOI: 10.4049/jimmunol.2000513
    The inflammatory response to severe acute respiratory syndrome-related coronavirus 2 infection has a direct impact on the clinical outcomes of coronavirus disease 2019 patients. Of the many innate immune pathways that are engaged by severe acute respiratory syndrome-related coronavirus 2, we highlight the importance of the inflammasome pathway. We discuss available pharmaceutical agents that target a critical component of inflammasome activation, signaling leading to cellular pyroptosis, and the downstream cytokines as a promising target for the treatment of severe coronavirus disease 2019-associated diseases.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links