Displaying all 5 publications

Abstract:
Sort:
  1. Tee HS, Lee CY
    J Insect Physiol, 2015 Jun;77:45-54.
    PMID: 25921676 DOI: 10.1016/j.jinsphys.2015.04.007
    The impact of desiccation on habitat selection, foraging and survival has been characterized for many insects. However, limited information is available for parasitic wasps. In this study, water balance, relative humidity (RH) preference, and effect of humidity on survival of solitary Evania appendigaster (L.) (Hymenoptera: Evaniidae) and gregarious Aprostocetus hagenowii (Ratzeburg) (Hymenoptera: Eulophidae) were examined. These species are both oothecal parasitoids of the American cockroach Periplaneta americana (L.) (Dictyoptera: Blattidae). E. appendigaster had significantly higher cuticular permeability (CP) and a lower surface area to volume ratio but a similar percentage of total body water content compared to A. hagenowii. No differences in these attributes were found between sexes of each parasitoid species. The percentage of total body water loss rates among E. appendigaster males and females and A. hagenowii females were similar but significantly lower than that of A. hagenowii males. All parasitoids except E. appendigaster males exhibited reduced survival times as the RH of their enclosure decreased from 87% to 38%, but this phenomenon did not occur when parasitoids were given a sugar solution. In environmental chambers with a 44-87% RH gradient, both sexes of E. appendigaster resided significantly more often in the 87% RH chamber than in the 44% RH chamber. For A. hagenowii, females preferred both the driest and the wettest chambers and males preferred the driest ones. These results demonstrate the water balance profile and its relationship to life history traits and differential responses to RH in these competing parasitoid wasps, suggesting the role of physiological and behavioral adaptations in shaping their ecological niche.
  2. Subramanian P, Prasanna V, Jayapalan JJ, Abdul Rahman PS, Hashim OH
    J Insect Physiol, 2014 Jun;65:37-44.
    PMID: 24780191 DOI: 10.1016/j.jinsphys.2014.04.005
    Accruing evidences imply that circadian organization of biochemical, endocrinological, cellular and physiological processes contribute to wellness of organisms and in the development of pathologies such as malignancy, sleep and endocrine disorders. Oxidative stress is known to mediate a number of diseases and it is notable to comprehend the orchestration of circadian clock of a model organism of circadian biology, Drosophila melanogaster, under oxidative stress. We investigated the nexus between circadian clock and oxidative stress susceptibility by exposing D. melanogaster to hydrogen peroxide (H2O2) or rotenone; the reversibility of rhythms following exposure to Bacopa monnieri extract (ayurvedic medicine rich in antioxidants) was also investigated. Abolishment of 24h rhythms in physiological response (negative geotaxis), oxidative stress markers (protein carbonyl and thiobarbituric acid reactive substances) and antioxidants (superoxide dismutase, catalase, glutathione-S-transferase and reduced glutathione) were observed under oxidative stress. Furthermore, abolishment of per mRNA rhythm in H2O2 treated wild type flies and augmented susceptibility to oxidative stress in clock mutant (cry(b)) flies connotes the role of circadian clock in reactive oxygen species (ROS) homeostasis. Significant reversibility of rhythms was noted following B. monnieri treatment in wild type flies than cry(b) flies. Our experimental approach revealed a relationship involving oxidative stress and circadian clock in fruit fly and the utility of Drosophila model in screening putative antioxidative phytomedicines prior to their use in mammalian systems.
  3. Foo FK, Othman AS, Lee CY
    J Insect Physiol, 2011 Nov;57(11):1495-500.
    PMID: 21840313 DOI: 10.1016/j.jinsphys.2011.07.019
    The majority of true parasitoids manipulate their host's physiology for their own benefit. In this study, we documented the physiological changes that occurred in major soldiers of the subterranean termite Macrotermes gilvus (Hagen) (Isoptera: Termitidae) parasitized by the koinobiont larval endoparasitoid Misotermes mindeni Disney and Neoh (Diptera: Phoridae). We compared the metabolic rate, body water content, body water loss rate, cuticular permeability, and desiccation tolerance between parasitized and unparasitized major soldiers. The metabolic rate of parasitized hosts was significantly higher than that of unparasitized termites. Mean total body water content of parasitized major soldiers (64.73±3.26%) was significantly lower than that of unparasitized termites (71.99±2.23%). Parasitized hosts also had significantly lower total body water loss rates (5.72±0.06%/h) and higher cuticular permeability (49.37±11.26 μg/cm/h/mmHg) than unparasitized major soldiers (6.75±0.16%/h and 60.76±24.98 μg/cm/h/mmHg, respectively). Parasitized major soldiers survived almost twice as long as unparasitized termites (LT(50)=6.66 h and LT(50)=3.40 h, respectively) and they had significantly higher tolerance to water loss compared to unparasitized termites (45.28±6.79% and 32.84±7.69%, respectively). Body lipid content in parasitized hosts (19.84±6.27%) was significantly higher than that of unparasitized termites (6.17±7.87%). Finally, parasitized hosts had a significantly lower percentage of cuticular water content than unparasitized major soldiers (10.97±1.84% and 13.17±2.21%, respectively). Based on these data, we conclude that the parasitism-induced physiological changes in the host are beneficial to the parasitoids as the alterations can clearly increase the parasite's chances of survival when exposed to extreme environmental conditions and ensure that the parasitoids are able to complete their larval development successfully before the host dies.
  4. Shamshir RA, Wee SL
    J Insect Physiol, 2019 09 26;119:103949.
    PMID: 31563620 DOI: 10.1016/j.jinsphys.2019.103949
    Certain male fruit flies from the genera Bactrocera and Zeugodacus (Diptera: Tephritidae) actively forage for floral semiochemicals produced by some endemic Bulbophyllum orchids found in tropical and subtropical forests. These floral semiochemicals are largely classified as either phenylbutanoids (e.g., raspberry ketone (RK)) or phenylpropanoids (e.g., methyl eugenol (ME)). Zingerone (ZN) is a phenylbutanoid recently found that structurally resembles ME and RK, both of which are phytochemicals commonly used as male attractants in fruit fly control programmes. It was previously shown that feeding on ME and RK increased the mating success of certain tephritid fruit flies, specifically in B. dorsalis and B. tryoni males, respectively, through enhancement of sexual signaling. However, ZN, which acts as a metabolic enhancer to increase male courtship activity in B. tryoni, did not show the same effect. As fruit fly-phytochemical lure interactions are unique and species-specific phenomena, this study seeks to elucidate the ecological significance of ZN feeding to Zeugodacus tau in terms of sexual signaling. We demonstrate here that ZN feeding by Z. tau males enhanced female attraction and subsequent mating success by increasing male courtship, and the attractiveness of the sexual signals in both wind tunnel and semi-field cage bioassays. In addition, we also demonstrated temporal effects on male behaviour in relation to the amount of lure intake. However, feeding on ZN did not appear to affect the total time spent in copula for Z. tau. This is the first report showing an important role of ZN in increasing courtship activity as well as enhancement of sexual signaling in Z. tau males.
  5. Widihastuty, Tobing MC, Marheni, Kuswardani RA, Fudholi A
    J Insect Physiol, 2020 07 17;125:104089.
    PMID: 32687849 DOI: 10.1016/j.jinsphys.2020.104089
    Ants are social insects with some significant roles in the ecosystem, including acting as predators for various insect pests. Myopopone castanea ants is a predatorfor the larvae of Oryctes rhinoceros pest. The existence of a similar niche of life between M. castanea ants and O. rhinoceros larvae opens an excellent opportunity to utilize these ants as biological agents. The research was conducted to study some aspects biology of M. castanea so that later it can be applied to mass rearing of natural enemies in the laboratory. The study was conducted by maintaining 50 eggs of M. castanea ant. Then, the eggs placed on two pieces of decayed palm oil stem together with twenty individual worker ants and ten individual end instar larvae. It needs five replications for the experiment. The results showed that egg stadia length was 13.8 days. It found five instars within M. castanea ant larvae with varying lengths of each stage. It takes 17.2 days for worker ant pupae to go through stadia pupa and 17.9 days for female ant pupae. The survival rate of M. castanea ant life from eggs until imago is 56.4%, which means that from several groups of eggs laid by queen ants, only about half have succeeded in becoming ant imago.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links