Displaying all 6 publications

Abstract:
Sort:
  1. Lokman FE, Seman NA, Ismail AA, Yaacob NA, Mustafa N, Khir AS, et al.
    J Nephrol, 2011;24(6):778-89.
    PMID: 21360476 DOI: 10.5301/JN.2011.6382
    BACKGROUND: Diabetic nephropathy (DN) is the most common cause of end-stage renal disease (ESRD) among type 2 diabetes mellitus patients (DM) in Malaysia. This study used microarray analysis to determine the gene expression profiling in ethnic Malay patients with type 2 DM.
    METHODS: A total of 312 patients were recruited; 25 were on dialysis due to ESRD, 128 were classified as normoalbuminuric, 93 as microalbuminuric and 66 as macroalbuminuric, based on urine albumin to creatinine ratio of <3.5, between 3.5 and 35 and =35 mg/mmol, respectively.
    RESULTS: Microalbuminuria was associated with up- and down-regulation of 2,694 and 2,538 genes, respectively, while macroalbuminuria was associated with up-regulation of 2,520 genes and down-regulation of 2,920 genes. There was significant up-regulation of 1,135 genes and down-regulation of 908 genes in the ESRD samples. Thirty-seven significantly up-regulated genes and 40 down-regulated genes were commonly expressed in all 3 groups of patients with worsening of renal functions. Up-regulated genes included major histocompatibility complex (HLA-C), complement component 3a receptor 1 (C3AR1), solute carrier family 16, member 3 (SLC16A3) and solute carrier family 9 (sodium/hydrogen exchanger) (SLC9A8). Consistently down-regulated genes included were bone morphogenetic phosphatase kinase (BMP2K), solute carrier family 12, member 1 (SLC12A1), solute carrier family 7 (SLC7A2), paternally expressed 10 (PEG10) and protein phosphatase 1 regulatory (inhibitor unit) (PPP1R1C).
    CONCLUSION: This study has identified several genes of interest, such as HLA-C, SLC16A3, SLC9A8, SLC12A1 and SLC7A2, that require verification of their roles as susceptibility genes for diabetic nephropathy in ethnic Malays with type 2 DM.
  2. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Basri F, Hussain NM, et al.
    J Nephrol, 2010 May-Jun;23(3):291-6.
    PMID: 20349424
    It is well established that renal sympathetic nerves are primarily involved in renal sodium and water regulation. However, the relationship between renal sympathetic nerve activity (RSNA) and renal potassium handling is not extensively known. The present study was performed to investigate the role of the renal sympathetic nervous system in the regulation of tubular potassium reabsorption and secretion.
  3. Sagliker Y, Acharya V, Golea O, Sabry A, Bali M, Eyupoglu K, et al.
    J Nephrol, 2008 Mar-Apr;21 Suppl 13:S134-8.
    PMID: 18446747
    It is known that secondary hyperparathyroidism (SH) and particularly skeletal changes is a severe condition in chronic kidney disease (CKD). Sagliker syndrome (SS) is a very prominent feature in CKD including uglifying human face appearances, short stature, extremely severe maxillary and mandibulary changes, soft tissues in the mouth, teeth-dental abnormalities, finger tip changes and severe psychological problems.
  4. Chang E, Lim JA, Low CL, Kassim A
    J Nephrol, 2021 02;34(1):97-104.
    PMID: 33394342 DOI: 10.1007/s40620-020-00903-0
    BACKGROUND: Water crisis is becoming a threat to the well-being of the human population worldwide and use of water for healthcare contributes substantially to this resource depletion. Hemodialysis consumes large quantities of water. A huge volume of high purity dialysis water is required to safely perform dialysis treatment. In this process, up to 60-70% of source water is discarded. Many strategies have been suggested to promote green dialysis, and these include reuse of water, however, very few dialysis facilities have taken the preliminary steps to employ it.

    METHODS: We share our experience in a developing country on an innovative reject-water reuse program combining aquaculture, hydroponic and horticulture activities. This is by far the first report on a "green dialysis" project involving aquaponics that reuse dialysis reverse osmosis (RO) reject water.

    RESULTS: Our expereince suggests that reject water can be reused to promote water conservation with encouraging results. It provides a good and biosecure environment for fish breeding and vegetable farming . This project promotes a reduction in carbon footprint, a reduction in water waste, a sustainable organic food source, may lead to income generation, and provides a shared purpose and sense of pride among staff and dialysis patients.

    CONCLUSIONS: Encompassing "environmental protection" practices into a hemodialysis unit can be done with relatively simple and practical steps.

  5. Tai CW, Gibbons K, Schibler A, Schlapbach LJ, Raman S
    J Nephrol, 2021 Jun 02.
    PMID: 34076880 DOI: 10.1007/s40620-021-01071-5
    BACKGROUND: Acute kidney injury (AKI) is a major cause of morbidity and mortality in critically ill children. The aim of this paper was to describe the prevalence and course of AKI in critically ill children and to compare different AKI classification criteria.

    METHODS: We conducted a retrospective observational study in our multi-disciplinary Pediatric Intensive Care Unit (ICU) from January 2015 to December 2018. All patients from birth to 16 years of age who were admitted to the pediatric ICU were included. The Kidney Disease Improving Global Outcomes (KDIGO) definition was considered as the reference standard. We compared the incidence data assessed by KDIGO, pediatric risk, injury, failure, loss of kidney function and end- stage renal disease (pRIFLE) and pediatric reference change value optimised for AKI (pROCK).

    RESULTS: Out of 7505 patients, 9.2% developed AKI by KDIGO criteria. The majority (59.8%) presented with stage 1 AKI. Recovery from AKI was observed in 70.4% of patients within 7 days from diagnosis. Both pRIFLE and pROCK were less sensitive compared to KDIGO criteria for the classification of AKI. Patients who met all three-KDIGO, pRIFLE and pROCK criteria had a high mortality rate (35.0%).

    CONCLUSION: Close to one in ten patients admitted to the pediatric ICU met AKI criteria according to KDIGO. In about 30% of patients, AKI persisted beyond 7 days. Follow-up of patients with persistent kidney function reduction at hospital discharge is needed to reveal the long-term morbidity due to AKI in the pediatric ICU.

  6. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, et al.
    J Nephrol, 2010 5 4;24(1):68-77.
    PMID: 20437405 DOI: 10.5301/jn.2010.6
    BACKGROUND: Renal sympathetic innervation plays an important role in the control of renal hemodynamics and may therefore contribute to the pathophysiology of many disease states affecting the kidney. Thus, the present study aimed to investigate the role of the renal sympathetic nervous system in the early deteriorations of renal hemodynamics and structure in rats with pathophysiological states of renal impairment.

    METHODS: Anesthetized Sprague Dawley (SD) rats with cisplatin-induced acute renal failure (ARF) or streptozotocin (STZ)-induced diabetes mellitus (DM) were subjected to a renal hemodynamic study 7 days after cisplatin and STZ administration. During the acute study, renal nerves were electrically stimulated, and responses in renal blood flow (RBF) and renal vascular resistance (RVR) were recorded in the presence and absence of renal denervation. Post mortem kidney collection was performed for histopathological assessment.

    RESULTS: In innervated ARF or DM rats, renal nerve stimulation produced significantly lower (all p<0.05, vs. innervated control) renal vasoconstrictor responses. These responses were markedly abolished when renal denervation was performed (all p<0.05); however, they appeared significantly higher compared with denervated controls (all p<0.05). Kidney injury was suppressed in denervated ARF, while, irrespective of renal denervation, renal specimens from DM rats were comparable to controls.

    CONCLUSIONS: Renal sympathoexcitation is involved in the pathogenesis of the renal impairment accompanying ARF and DM, and may even precede the establishment of an observable renal injury. There is a possible enhancement in the renal sensitivity to intrarenal norepinephrine following renal denervation in ARF and DM rats.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links