Displaying all 17 publications

Abstract:
Sort:
  1. Draisma SG, van Reine WF, Sauvage T, Belton GS, Gurgel CF, Lim PE, et al.
    J Phycol, 2014 Dec;50(6):1020-34.
    PMID: 26988784 DOI: 10.1111/jpy.12231
    The siphonous green algal family Caulerpaceae includes the monotypic genus Caulerpella and the species-rich genus Caulerpa. A molecular phylogeny was inferred from chloroplast tufA and rbcL DNA sequences analyzed together with a five marker dataset of non-caulerpacean siphonous green algae. Six Caulerpaceae lineages were revealed, but relationships between them remained largely unresolved. A Caulerpella clade representing multiple cryptic species was nested within the genus Caulerpa. Therefore, that genus is subsumed and Caulerpa ambigua Okamura is reinstated. Caulerpa subgenus status is proposed for the six lineages substantiated by morphological characters, viz., three monotypic subgenera Cliftonii, Hedleyi, and Caulerpella, subgenus Araucarioideae exhibiting stolons covered with scale-like appendages, subgenus Charoideae characterized by a verticillate branching mode, and subgenus Caulerpa for a clade regarded as the Caulerpa core clade. The latter subgenus is subdivided in two sections, i.e., Sedoideae for species with pyrenoids and a species-rich section Caulerpa. A single section with the same name is proposed for each of the other five subgenera. In addition, species status is proposed for Caulerpa filicoides var. andamanensis (W.R. Taylor). All Caulerpa species without sequence data were examined (or data were taken from species descriptions) and classified in the new classification scheme. A temporal framework of Caulerpa diversification is provided by calibrating the phylogeny in geological time. The chronogram suggests that Caulerpa diversified into subgenera and sections after the Triassic-Jurassic mass extinction and that infra-section species radiation happened after the Cretaceous-Tertiary mass extinction.
  2. Kremp A, Tahvanainen P, Litaker W, Krock B, Suikkanen S, Leaw CP, et al.
    J Phycol, 2014 Feb;50(1):81-100.
    PMID: 26988010 DOI: 10.1111/jpy.12134
    Alexandrium ostenfeldii (Paulsen) Balech and Tangen and A. peruvianum (Balech and B.R. Mendiola) Balech and Tangen are morphologically closely related dinoflagellates known to produce potent neurotoxins. Together with Gonyaulax dimorpha Biecheler, they constitute the A. ostenfeldii species complex. Due to the subtle differences in the morphological characters used to differentiate these species, unambiguous species identification has proven problematic. To better understand the species boundaries within the A. ostenfeldii complex we compared rDNA data, morphometric characters and toxin profiles of multiple cultured isolates from different geographic regions. Phylogenetic analysis of rDNA sequences from cultures characterized as A. ostenfeldii or A. peruvianum formed a monophyletic clade consisting of six distinct groups. Each group examined contained strains morphologically identified as either A. ostenfeldii or A. peruvianum. Though key morphological characters were generally found to be highly variable and not consistently distributed, selected plate features and toxin profiles differed significantly among phylogenetic clusters. Additional sequence analyses revealed a lack of compensatory base changes in ITS2 rRNA structure, low to intermediate ITS/5.8S uncorrected genetic distances, and evidence of reticulation. Together these data (criteria currently used for species delineation in dinoflagellates) imply that the A. ostenfeldii complex should be regarded a single genetically structured species until more material and alternative criteria for species delimitation are available. Consequently, we propose that A. peruvianum is a heterotypic synonym of A. ostenfeldii and this taxon name should be discontinued.
  3. Belton GS, van Reine WF, Huisman JM, Draisma SG, D Gurgel CF
    J Phycol, 2014 Feb;50(1):32-54.
    PMID: 26988007 DOI: 10.1111/jpy.12132
    Although recent molecular studies have indicated the presence of a number of distinct species within the Caulerpa racemosa-peltata complex, due to the difficulties presented by high levels of phenotypic plasticity and the large number of synonyms, infra-specific taxa, and names of uncertain affinity, taxonomic proposals are yet to be made. In this study, we aimed to resolve the taxonomy of the complex and provide an example of how historical nomenclature can best be integrated into molecular based taxonomies. We accomplished this by first determining the number of genetic species within our globally sampled data set through a combination of phylogenetic and species-delimitation approaches of partial elongation factor TU and RUBISCO large subunit gene sequences. Guided by these results, comparative morphological examinations were then undertaken to gauge the extent of phenotypic plasticity within each species, as well as any morphological overlap between them. Our results revealed the presence of 11 distinct species within the complex, five of which showed high levels of phenotypic plasticity and partial overlap with other species. On the basis of observations of a large number of specimens, including type specimens/descriptions, and geographic inferences, we were able to confidently designate names for the lineages. Caulerpa peltata, C. imbricata and C. racemosa vars. laetevirens, occidentalis and turbinata were found to represent environmentally induced forms of a single species, for which the earlier-described C. chemnitzia, previously regarded as a synonym of C. racemosa var. turbinata, is reinstated. C. cylindracea, C. lamourouxii, C. macrodisca, C. nummularia and C. oligophylla are also reinstated and two new species, C. macra stat. nov. and C. megadisca sp. nov., are proposed.
  4. Lim HC, Teng ST, Leaw CP, Lim PT
    J Phycol, 2013 Oct;49(5):902-16.
    PMID: 27007315 DOI: 10.1111/jpy.12101
    A study on the morphology and phylogeny of 18 strains of Pseudo-nitzschia established from the Strait of Malacca, Peninsular Malaysia, was undertaken. Morphological data combined with molecular evidence show that they constitute three new species, for which the names, P. batesiana sp. nov., P. lundholmiae sp. nov., and P. fukuyoi sp. nov., are proposed. The three new species closely resemble species in the P. pseudodelicatissima complex sensu lato. Morphologically, P. batesiana differs from other species in the complex by having a smaller part of cell overlapping in the chain, whereas P. lundholmiae differs by having fewer poroid sectors and P. fukuyoi by having a distinct type of poroid sectors. Nucleotide sequences of the LSU rDNA (D1-D3) of the three new species reveal significant nucleotide sequence divergence (0.1%-9.3%) from each other and from other species in the P. pseudodelicatissima complex s.l. The three species are phylogenetically closely related to species in the P. pseudodelicatissima complex, with P. batesiana appearing as a sister taxon to P. circumpora, P. caciantha, and P. subpacifica; whereas P. lundholmiae and P. fukuyoi are more closely related to P. pseudodelicatissima and P. cuspidata. The three species show 2-3 compensatory base changes (CBCs) in their ITS2 transcripts when compared to the closely related species. The ITS2 with its structural information has proven its robustness in constructing a better resolved phylogenetic framework for Pseudo-nitzschia.
  5. Mohammad-Noor N, Moestrup Ø, Lundholm N, Fraga S, Adam A, Holmes MJ, et al.
    J Phycol, 2013 Jun;49(3):536-45.
    PMID: 27007042 DOI: 10.1111/jpy.12062
    Coolia is a widespread and ecologically important genus of benthic marine dinoflagellates found in tropical regions. Historically, there has been taxonomic confusion about the taxonomy and toxicity of this group. The goal of this study was to resolve morphological questions concerning Coolia tropicalis and determine the taxonomic identity of the Australian Coolia isolate which has been reported to produce cooliatoxins. To accomplish this, the morphology of tropical strains from Belize (the type locality of C. tropicalis), Malaysia, Indonesia, and Australia were examined and compared to published reports. The morphological analysis showed that C. tropicalis differs from the original description in that it has a slightly larger size (35-47 μm long by 30-45 μm wide versus 23-40 μm long by 25-39 μm wide), and the shape of fourth apical plate, and the length of Po plate (7.4-12 μm versus 7 μm). Based on both morphology and phylogenetic analysis using LSU D1- D3 rDNA sequences, the clones of C. tropicalis from Malaysia, Indonesia, and Belize were found to form a monophyletic clade within the genus. The strain producing cooliatoxin was found to be C. tropicalis, not Coolia monotis as originally assumed. To explore the factors influencing the growth of Coolia species, the growth rates of C. tropicalis and Coolia malayensis were determined at different temperatures and salinities. Both species tolerated a wide range of temperatures, but cannot survive at temperatures <20°C or >35°C. C. monotis, the dominant species reported in the literature, probably does not produce toxins.
  6. Lim HC, Leaw CP, Su SN, Teng ST, Usup G, Mohammad-Noor N, et al.
    J Phycol, 2012 Oct;48(5):1232-47.
    PMID: 27011282 DOI: 10.1111/j.1529-8817.2012.01213.x
    Field sampling was undertaken to investigate the occurrence of Pseudo-nitzschia Peragallo species in eight locations along the coast of Malaysian Borneo. A total of 108 strains of Pseudo-nitzschia species were isolated, and their morphology examined with SEM and TEM. Additionally, molecular data from nuclear-encoded partial LSU rDNA, and ITS regions, were characterized. A total of five species were confidently identified based on a combination of distinct morphological characteristics and supporting molecular evidence: P. brasiliana Lundholm, Hasle & Fryxell, P. cuspidata (Hasle) Hasle, P. dolorosa Lundholm & Moestrup, P. micropora Priisholm, Moestrup & Lundholm, and P. pungens (Grunow) Hasle var. pungens. However, one morphotype from Sarawak, while somewhat similar to P. caciantha, showed significant morphological distinction from this and any other of the currently described species. Most notably this morphotype possessed a characteristic pore arrangement in the poroids, with the fine pores in each perforation sector arranged in circles. Pair-wise sequence comparison of the LSU rDNA between this unidentified morphotype and P. caciantha Lundholm, Moestrup & Hasle, revealed 2.7% genetic divergence. Phylogenetic analyses strongly supported the monophyly of the morphotype. Based upon these supporting data it is here described as a new species, Pseudo-nitzschia circumpora sp. nov. A key to the six species of Pseudo-nitzschia from Malaysian Borneo is presented. Molecular signatures for all species were established based on structural comparisons of ITS2 rRNA transcripts.
  7. Siow RS, Teo SS, Ho WY, Shukor MY, Phang SM, Ho CL
    J Phycol, 2012 Feb;48(1):155-62.
    PMID: 27009660 DOI: 10.1111/j.1529-8817.2011.01105.x
    Galactose-1-phosphate uridylyltransferase (GALT) catalyzes the reversible conversion of glucose-1-phosphate and UDP-galactose to galactose-1-phosphate and UDP-glucose. This enzyme is also responsible for one of the biochemical steps that produce the precursors of agar and agarose. In this study, we report the molecular cloning and sequence analyses of a cDNA encoding GALT, from Gracilaria changii (B. M. Xia et I. A. Abbott) I. A. Abbott, J. Zhang et B. M. Xia, which constitutes a genus of seaweeds that supply more than 60% of the world's agar and agarose. We have subcloned this cDNA into a bacterial expression cloning vector and characterized the enzyme activities of its recombinant proteins in vitro. The GcGALT gene was shown to be up-regulated by salinity stresses. The abundance of transcripts encoding GcGALT was the highest in G. changii, followed by Gracilaria edulis and Gracilaria salicornia in a descending order, corresponding to their respective agar contents. Our findings indicated that GALT could be one of the components that determines the agar yield in Gracilaria species.
  8. Win NN, Hanyuda T, Arai S, Uchimura M, Prathep A, Draisma SG, et al.
    J Phycol, 2011 Oct;47(5):1193-209.
    PMID: 27028247 DOI: 10.1111/j.1529-8817.2011.01054.x
    A taxonomic study of the genus Padina from Japan, Southeast Asia, and Hawaii based on morphology and gene sequence data (rbcL and cox3) resulted in the recognition of four new species, that is, Padina macrophylla and Padina ishigakiensis from Ryukyu Islands, Japan; Padina maroensis from Hawaii; and Padina usoehtunii from Myanmar and Thailand. All species are bistratose and morphologically different from one another as well as from any known taxa by a combination of characters relating to degree of calcification; the structure, position, and arrangement of hairlines (HLs) and reproductive sori; and the presence or absence of rhizoid-like groups of hairs and an indusium. Molecular phylogenetic analyses demonstrated a close relationship between P. ishigakiensis, P. macrophylla, P. maroensis, and Padina australis Hauck. The position of P. usoehtunii, however, was not fully resolved, being either sister to a clade comprising the other three new species and P. australis in the rbcL tree or more closely related to a clade comprising several other recently described species in the cox3 tree. The finding of the four new species demonstrates high species diversity particularly in southern Japan. The following characters were first recognized here to be useful for species delimitation: the presence or absence of small rhizoid-like groups of hairs on the thallus surface, structure and arrangement of HLs on both surfaces either alternate or irregular, and arrangement of the alternating HLs between both surfaces in equal or unequal distance. The evolutionary trajectory of these and six other morphological characters used in species delineation was traced on the phylogenetic tree.
  9. Teo SS, Ho CL, Teoh S, Rahim RA, Phang SM
    J Phycol, 2009 Oct;45(5):1093-9.
    PMID: 27032354 DOI: 10.1111/j.1529-8817.2009.00724.x
    Osmotic stress is one of the most significant natural abiotic stresses that occur in the intertidal zones. Seaweeds may physiologically acclimate to changing osmolarity by altering their transcriptome. Here, we investigated the transcriptomic changes of Gracilaria changii (B. M. Xia et I. A. Abbott) I. A. Abbott, J. Zhang et B. M. Xia in response to hyper- and hypoosmotic stresses using a cDNA microarray approach. Microarray analysis revealed that 199 and 200 genes from ∼3,300 genes examined were up- and down-regulated by >2-fold in seaweed samples treated at 50 parts per thousand (ppt) artificial seawater (ASW) compared with those at 30 ppt ASW, respectively. The number of genes that were up- and down-regulated by >2-fold in seaweed samples treated at 10 ppt ASW compared with those at 30 ppt ASW were 154 and 187, respectively. A majority of these genes were only differentially expressed under hyper- or hypoosmotic conditions, whereas 67 transcripts were affected by both stresses. The findings of this study have shed light on the expression profiles of many transcripts during the acclimation of G. changii to hyperosmotic and hypoosmotic conditions. This information may assist in the prioritization of genes to be examined in future studies.
  10. Zulkifly SB, Graham JM, Young EB, Mayer RJ, Piotrowski MJ, Smith I, et al.
    J Phycol, 2013 Feb;49(1):1-17.
    PMID: 27008383 DOI: 10.1111/jpy.12025
    The green algal genus Cladophora forms conspicuous nearshore populations in marine and freshwaters worldwide, commonly dominating peri-phyton communities. As the result of human activities, including the nutrient pollution of nearshore waters, Cladophora-dominated periphyton can form nuisance blooms. On the other hand, Cladophora has ecological functions that are beneficial, but less well appreciated. For example, Cladophora has previously been characterized as an ecological engineer because its complex structure fosters functional and taxonomic diversity of benthic microfauna. Here, we review classic and recent literature concerning taxonomy, cell biology, morphology, reproductive biology, and ecology of the genus Cladophora, to examine how this alga functions to modify habitats and influence littoral biogeochemistry. We review the evidence that Cladophora supports large, diverse populations of microalgal and bacterial epiphytes that influence the cycling of carbon and other key elements, and that the high production of cellulose and hydrocarbons by Cladophora-dominated periphyton has the potential for diverse technological applications, including wastewater remediation coupled to renewable biofuel production. We postulate that well-known aspects of Cladophora morphology, hydrodynamically stable and perennial holdfasts, distinctively branched architecture, unusually large cell and sporangial size and robust cell wall construction, are major factors contributing to the multiple roles of this organism as an ecological engineer.
  11. Graham LE, Knack JJ, Graham ME, Graham JM, Zulkifly S
    J Phycol, 2015 Jun;51(3):408-18.
    PMID: 26986658 DOI: 10.1111/jpy.12296
    Periphyton dominated by the cellulose-rich filamentous green alga Cladophora forms conspicuous growths along rocky marine and freshwater shorelines worldwide, providing habitat for diverse epibionts. Bacterial epibionts have been inferred to display diverse functions of biogeochemical significance: N-fixation and other redox reactions, phosphorus accumulation, and organic degradation. Here, we report taxonomic diversity of eukaryotic and prokaryotic epibionts and diversity of genes associated with materials cycling in a Cladophora metagenome sampled from Lake Mendota, Dane Co., WI, USA, during the growing season of 2012. A total of 1,060 distinct 16S, 173 18S, and 351 28S rRNA operational taxonomic units, from which >220 genera or species of bacteria (~60), protists (~80), fungi (6), and microscopic metazoa (~80), were distinguished with the use of reference databases. We inferred the presence of several algal taxa generally associated with marine systems and detected Jaoa, a freshwater periphytic ulvophyte previously thought endemic to China. We identified six distinct nifH gene sequences marking nitrogen fixation, >25 bacterial and eukaryotic cellulases relevant to sedimentary C-cycling and technological applications, and genes encoding enzymes in aerobic and anaerobic pathways for vitamin B12 biosynthesis. These results emphasize the importance of Cladophora in providing habitat for microscopic metazoa, fungi, protists, and bacteria that are often inconspicuous, yet play important roles in ecosystem biogeochemistry.
  12. Teng ST, Lim PT, Lim HC, Rivera-Vilarelle M, Quijano-Scheggia S, Takata Y, et al.
    J Phycol, 2015 Aug;51(4):706-25.
    PMID: 26986792 DOI: 10.1111/jpy.12313
    A new species of Pseudo-nitzschia (Bacillariophyceae) is described from plankton samples collected from Port Dickson (Malacca Strait, Malaysia) and Manzanillo Bay (Colima, Mexico). The species possesses a distinctive falcate cell valve, from which they form sickle-like colonies in both environmental samples and cultured strains. Detailed observation of frustules under TEM revealed ultrastructure that closely resembles P. decipiens, yet the new species differs by the valve shape and greater ranges of striae and poroid densities. The species is readily distinguished from the curve-shaped P. subcurvata by the presence of a central interspace. The morphological distinction is further supported by phylogenetic discrimination. We sequenced and analyzed the nuclear ribosomal RNA genes in the LSU and the second internal transcribed spacer, including its secondary structure, to infer the phylogenetic relationship of the new species with its closest relatives. The results revealed a distinct lineage of the new species, forming a sister cluster with its related species, P. decipiens and P. galaxiae, but not with P. subcurvata. We examined the domoic acid (DA) production of five cultured strains from Malaysia by Liquid chromatography-mass spectrometry (LC-MS), but they showed no detectable DA. Here, we present the taxonomic description of the vegetative cells, document the sexual reproduction, and detail the molecular phylogenetics of Pseudo-nitzschia sabit sp. nov.
  13. Chen XM, Pang JX, Huang CX, Lundholm N, Teng ST, Li A, et al.
    J Phycol, 2021 Feb;57(1):335-344.
    PMID: 33174223 DOI: 10.1111/jpy.13101
    To explore the species diversity and toxin profile of Pseudo-nitzschia, monoclonal strains were established from Chinese southeast coastal waters. The morphology was examined under light and transmission electron microscopy. The internal transcribed spacer region of ribosomal DNA was sequenced for phylogenetic analyses, and the secondary structure of ITS2 was predicted and compared among allied taxa. A combination of morphological and molecular data showed the presence of two new species, Pseudo-nitzschia hainanensis sp. nov. and Pseudo-nitzschia taiwanensis sp. nov. Pseudo-nitzschia hainanensis was characterized by a dumpy-lanceolate valve with slightly blunt apices and a central nodule, as well as striae comprising two rows of poroids. Pseudo-nitzschia taiwanensis was characterized by a slender-lanceolate valve, and striae comprising one row of split poroids. The poroid structure mainly comprised two sectors. Both taxa constituted their own monophyletic lineage in the phylogenetic analyses inferred from ITS2 rDNA and were well differentiated from other Pseudo-nitzschia species. Morphologically, P. hainanensis and P. taiwanensis could be assigned to the Pseudo-nitzschia delicatissima and the Pseudo-nitzschia pseudodelicatissima complex, respectively. Particulate domoic acid was measured using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS), but no detectable pDA was found. With the description of the two new species, the species diversity of genus Pseudo-nitzschia reaches 58 worldwide, among which 31 have been recorded from Chinese coastal waters.
  14. Teng ST, Tan SN, Lim HC, Dao VH, Bates SS, Leaw CP
    J Phycol, 2016 12;52(6):973-989.
    PMID: 27403749 DOI: 10.1111/jpy.12448
    Forty-eight isolates of Pseudo-nitzschia species were established from the Miri coast of Sarawak (Malaysian Borneo) and underwent TEM observation and molecular characterization. Ten species were found: P. abrensis, P. batesiana, P. fukuyoi, P. kodamae, P. lundholmiae, P. multistriata, P. pungens, P. subfraudulenta, as well as two additional new morphotypes, herein designated as P. bipertita sp. nov. and P. limii sp. nov. This is the first report of P. abrensis, P. batesiana, P. kodamae, P. fukuyoi, and P. lundholmiae in coastal waters of Malaysian Borneo. Pseudo-nitzschia bipertita differs from its congeners by the number of sectors that divide the poroids, densities of band striae, and its cingular band structure. Pseudo-nitzschia limii, a pseudo-cryptic species in the P. pseudodelicatissima complex sensu lato, is distinct by having wider proximal and distal mantles, a higher number of striae, and greater poroid height in the striae of the valvocopula. The species were further supported by the phylogenetic reconstructions of the nuclear-encoded large subunit ribosomal gene and the second internal transcribed spacer. Phylogenetically, P. bipertita clustered with its sister taxa (P. subpacifica + P. heimii); P. limii appears as a sister taxon to P. kodamae and P. hasleana in the ITS2 tree. Pairwise comparison of ITS2 transcripts with its closest relatives revealed the presence of both hemi- and compensatory base changes. Toxicity analysis showed detectable levels of domoic acid in P. abrensis, P. batesiana, P. lundholmiae, and P. subfraudulenta, but both new species tested below the detection limit.
  15. Li Y, Dong HC, Teng ST, Bates SS, Lim PT
    J Phycol, 2018 12;54(6):918-922.
    PMID: 30270437 DOI: 10.1111/jpy.12791
    Pseudo-nitzschia nanaoensis sp. nov. is described from waters around Nan'ao Island (South China Sea), using morphological data and molecular evidence. This species is morphologically most similar to P. brasiliana, but differs by a denser arrangement of fibulae, interstriae, and poroids, as well as by the structure of the valvocopula and the narrow second band. Pseudo-nitzschia nanaoensis constitutes a monophyletic lineage and is well differentiated from other species on the LSU and ITS2 sequence-structure trees. Pseudo-nitzschia nanaoensis makes up the basal node on the LSU tree, and forms a sister clade with a group of P. pungens and P. multiseries on the ITS2 tree. The ability of cultured strains to produce domoic acid was assessed, including its possible induction by the presence of a copepod and brine shrimp, by liquid chromatography-tandem mass spectrometry. However, no strains showed detectable domoic acid.
  16. Luo Z, Hu Z, Tang Y, Mertens KN, Leaw CP, Lim PT, et al.
    J Phycol, 2018 10;54(5):744-761.
    PMID: 30144373 DOI: 10.1111/jpy.12780
    The genus Gymnodinium includes many morphologically similar species, but molecular phylogenies show that it is polyphyletic. Eight strains of Gymnodinium impudicum, Gymnodinium dorsalisulcum and a novel Gymnodinium-like species from Chinese and Malaysian waters and the Mediterranean Sea were established. All of these strains were examined with light microscopy, scanning electron microscopy and transmission electron microscopy. SSU, LSU and internal transcribed spacers rDNA sequences were obtained. A new genus, Wangodinium, was erected to incorporate strains with a loop-shaped apical structure complex (ASC) comprising two rows of amphiesmal vesicles, here referred to as a new type of ASC. The chloroplasts of Wangodinium sinense are enveloped by two membranes. Pigment analysis shows that peridinin is the main accessory pigment in W. sinense. Wangodinium differs from other genera mainly in its unique ASC, and additionally differs from Gymnodinium in the absence of nuclear chambers, and from Lepidodinium in the absence of Chl b and nuclear chambers. New morphological information was provided for G. dorsalisulcum and G. impudicum, e.g., a short sulcal intrusion in G. dorsalisulcum; nuclear chambers in G. impudicum and G. dorsalisulcum; and a chloroplast enveloped by two membranes in G. impudicum. Molecular phylogeny was inferred using maximum likelihood and Bayesian inference with independent SSU and LSU rDNA sequences. Our results support the classification of Wangodinium within the Gymnodiniales sensu stricto clade and it is close to Lepidodinium. Our results also support the close relationship among G. dorsalisulcum, G. impudicum, and Barrufeta. Further research is needed to assign these Gymnodinium species to Barrufeta or to erect new genera.
  17. Lim HC, Tan SN, Teng ST, Lundholm N, Orive E, David H, et al.
    J Phycol, 2018 04;54(2):234-248.
    PMID: 29377161 DOI: 10.1111/jpy.12620
    Analyses of the mitochondrial cox1, the nuclear-encoded large subunit (LSU), and the internal transcribed spacer 2 (ITS2) RNA coding region of Pseudo-nitzschia revealed that the P. pseudodelicatissima complex can be phylogenetically grouped into three distinct clades (Groups I-III), while the P. delicatissima complex forms another distinct clade (Group IV) in both the LSU and ITS2 phylogenetic trees. It was elucidated that comprehensive taxon sampling (sampling of sequences), selection of appropriate target genes and outgroup, and alignment strategies influenced the phylogenetic accuracy. Based on the genetic divergence, ITS2 resulted in the most resolved trees, followed by cox1 and LSU. The morphological characters available for Pseudo-nitzschia, although limited in number, were overall in agreement with the phylogenies when mapped onto the ITS2 tree. Information on the presence/absence of a central nodule, number of rows of poroids in each stria, and of sectors dividing the poroids mapped onto the ITS2 tree revealed the evolution of the recently diverged species. The morphologically based species complexes showed evolutionary relevance in agreement with molecular phylogeny inferred from ITS2 sequence-structure data. The data set of the hypervariable region of ITS2 improved the phylogenetic inference compared to the cox1 and LSU data sets. The taxonomic status of P. cuspidata and P. pseudodelicatissima requires further elucidation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links