MATERIALS AND METHODS: A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05.
RESULTS: Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers.
CONCLUSIONS: Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold.
MATERIALS AND METHODS: The flexural strength and flexural modulus of three OPEFB fiber-reinforced PMMA were compared with a conventional and a commercially available reinforced PMMA. The three test groups included OPEFB fibers of 0.5 mm thickness, 2.0 mm thickness, and OPEFB cellulose.
RESULTS: All test group specimens demonstrated improved flexural strength and flexural modulus over conventional PMMA. Reinforcement with OPEFB cellulose showed the highest mean flexural strength and flexural modulus, which were statistically significant when compared to the conventional and commercially reinforced PMMA used in this study. OPEFB fiber in the form of cellulose and 0.5 mm thickness fiber significantly improved flexural strength and flexural modulus of conventional PMMA resin. Further investigation on the properties of PMMA reinforced with OPEFB cellulose is warranted.
CONCLUSIONS: Natural OPEFB fibers, especially OPEFB in cellulose form, can be considered a viable alternative to existing commercially available synthetic fiber reinforced PMMA resin.
MATERIALS AND METHODS: Sixmaster dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Ten copings of 0.6 mm thickness were fabricated from each type of ceramic, for a total of thirty copings. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented with resin luting cement Panavia F according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.
RESULTS: The results of the present study showed the following mean loads at fracture: Turkom-Cera (2184 +/- 164 N), In-Ceram (2042 +/- 200 N), and Procera AllCeram (1954 +/- 211 N). ANOVA and Scheffe's post hoc test showed that the mean load at fracture of Turkom-Cera was significantly different from Procera AllCeram (p < 0.05). Scheffe's post hoc test showed no significant difference between the mean load at fracture of Turkom-Cera and In-Ceram or between the mean load at fracture of In-Ceram and Procera AllCeram.
CONCLUSION: Because Turkom-Cera demonstrated equal to or higher loads at fracture than currently accepted all-ceramic materials, it would seem to be acceptable for fabrication of anterior and posterior ceramic crowns.
METHODS: Six master dies were duplicated from the prepared maxillary first premolar tooth using nonprecious metal alloy (Wiron 99). Thirty copings (Procera AllCeram) of 0.6-mm thickness were manufactured. Three types of luting media were used: zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and dual-cured composite resin cement (Panavia F). Ten copings were cemented with each type. Two master dies were used for each group, and each of them was used to lute five copings. All groups were cemented according to manufacturer's instructions and received a static load of 5 kg during cementation. After 24 hours of distilled water storage at 37 degrees C, the copings were vertically compressed using a universal testing machine at a crosshead speed of 1 mm/min.
RESULTS: ANOVA revealed significant differences in the load at fracture among the three groups (p < 0.001). The fracture strength results showed that the mean fracture strength of zinc phosphate cement (Elite), glass ionomer cement (Fuji I), and resin luting cement (Panavia F) were 1091.9 N, 784.8 N, and 1953.5 N, respectively.
CONCLUSION: Different luting agents have an influence on the fracture resistance of Procera AllCeram copings.
MATERIALS AND METHODS: The flexural strength and flexural modulus, following thermal cycling (5000 cycles of 5-55°C) of 3 MCC-reinforced poly methyl methacrylate (PMMA) specimens were compared with the conventional and commercially available high-impact PMMA. The 3 test groups were represented by addition of various weight combinations of MCC and acrylic powders.
RESULTS: All 3 test groups with the addition of MCC demonstrated improved flexural strength and flexural modulus compared to the conventional resin, without and after thermal cycling. The highest mean flexural strength corresponded to the specimens reinforced with 5% MCC followed by 2% MCC.
CONCLUSION: Addition of MCC derived from OPEFB to PMMA may be a viable alternative to the existing, commercially available synthetic reinforced PMMA resins. The potential application of natural fillers in the fabrication of a reinforced denture base resin needs further study.
MATERIALS AND METHODS: An auricular prosthesis, a complete denture, and anterior and posterior crowns were constructed using conventional methods and laser scanned to create computerized 3D meshes. The meshes were optimized independently by four computer-aided design software (Meshmixer, Meshlab, Blender, and SculptGL) to 100%, 90%, 75%, 50%, and 25% levels of original file size. Upon optimization, the following parameters were virtually evaluated and compared; mesh vertices, file size, mesh surface area (SA), mesh volume (V), interpoint discrepancies (geometric similarity based on virtual point overlapping), and spatial similarity (volumetric similarity based on shape overlapping). The influence of software and optimization on surface area and volume of each prosthesis was evaluated independently using multiple linear regression.
RESULTS: There were clear observable differences in vertices, file size, surface area, and volume. The choice of software significantly influenced the overall virtual parameters of auricular prosthesis [SA: F(4,15) = 12.93, R2 = 0.67, p < 0.001. V: F(4,15) = 9.33, R2 = 0.64, p < 0.001] and complete denture [SA: F(4,15) = 10.81, R2 = 0.67, p < 0.001. V: F(4,15) = 3.50, R2 = 0.34, p = 0.030] across optimization levels. Interpoint discrepancies were however limited to <0.1mm and volumetric similarity was >97%.
CONCLUSION: Open-source mesh optimization of smaller dental prostheses in this study produced minimal loss of geometric and volumetric details. SculptGL models were most influenced by the amount of optimization performed.
METHODS: An online electronic search was performed using the PubMed, Scopus, and Web of Science databases for in vitro studies published from 2010 to 2020 in English. The retrieved eligible studies that compared the fracture resistance of titanium and fiber posts on human teeth were selected. The pooled standardized mean difference (SMD) with a 95% confidence interval was calculated. In addition, the trial sequential analysis (TSA) was performed to test if the available studies are sufficient to make conclusive evidence.
RESULTS: Of the 1165 retrieved studies, 17 studies were included in the qualitative analysis, while 16 studies were included in the quantitative analysis. Because of the high heterogeneity among studies, data from 10 studies were pooled and submitted to TSA. A total of 852 teeth were evaluated for fracture of the posts in 27 independent comparison groups. The pooled effect of the residual studies revealed no significant difference between titanium and fiber posts (SMD = -0.12; 95% CI = -0.30, 0.06; p = 0.20). Results of the TSA revealed no conclusive evidence.
CONCLUSIONS: The results of the current evidence revealed no significant difference between fiber and titanium posts. The evidence is insufficient, and more standardized in vitro studies are required.
MATERIALS AND METHODS: Three-dimensional solid models of the maxilla, mucosa, and denture of a selected edentulous patient were created using Mimics and CATIA software. The FEA model was created and duplicated in ANSYS 16.0 to perform two simulations for the IOD and the CD models. The values of maximum stress and strain and total deformation were obtained and compared to the outcomes of premaxilla resorption from a parallel clinical study.
RESULTS: The maximum principal stress in the premaxilla in the IOD model ranged from 0.019 to 0.336 MPa, while it ranged from 0.011 to 0.193 MPa in the CD model. The maximum principal strain in the IOD model was 1.75 times greater than that in the CD model. Total deformation was 1.8 times higher in the IOD model. Greater bone resorption was observed in regions of higher stress, which were on the occlusal and buccal sides of the premaxilla residual ridge.
CONCLUSION: Stress, strain, and total deformation values present in the premaxilla area beneath a CD were approximately two times greater in a comparison between an opposing mandibular two-IOD and an opposing mandibular CD. The results were consistent with a parallel clinical study in which the rate of premaxilla bone resorption was almost three times greater in the IOD group.
METHODS: Relevant articles written in English only, before January 15, 2017, were identified using an electronic search in the PubMed, Scopus, and Google Scholar databases. Furthermore, a manual search of the related major journals was also conducted to identify more pertinent articles. The relevancy of the articles was verified by screening the title, abstract, and full text if they met the inclusion criteria. A total of 37 articles satisfied the criteria, from which data were extracted for qualitative synthesis.
RESULTS: Among the 37 included articles, 14 were without aging, 15 were natural or artificial accelerated aging, 7 were outdoor weathering, and 1 contained both artificial aging and outdoor weathering. Only 4 studies out of the 14 without aging had significant observations; whereas 9 articles with natural or artificial aging published significant results, and 3 out of 7 outdoor weathering articles showed significant changes in the evaluated silicone elastomers.
CONCLUSIONS: Despite the varying research, it seems that the single "ideal" maxillofacial prosthetic material that can provide sufficient resistance against different aging conditions is yet to be identified. Therefore, it is imperative for standardization organizations, the scientific community, and academia to develop modified prosthetic silicones possessing improved physical properties and color stability, limiting the clinical problems regarding degradation of maxillofacial prostheses.