This study investigates the complete molecular characterization including bioinformatics characterization, gene expression, synthesis of N and C terminal peptides and their antimicrobial activity of the core histone 4 (H4) from freshwater giant prawn Macrobrachium rosenbergii (Mr). A cDNA encoding MrH4 was identified from the constructed cDNA library of M. rosenbergii during screening and the sequence was obtained using internal sequencing primers. The MrH4 coding region possesses a polypeptide of 103 amino acids with a calculated molecular weight of 11kDa and an isoelectric point of 11.5. The bioinformatics analysis showed that the MrH4 polypeptide contains a H4 signature at (15)GAKRH(19). Multiple sequence alignment of MrH4 showed that the N-terminal (21-42) and C-terminal (87-101) antimicrobial peptide regions and the pentapeptide or H4 signature (15-19) are highly conserved including in humans. The phylogenetic tree formed two separate clades of vertebrate and invertebrate H4, wherein MrH4 was located within the arthropod monophyletic clade of invertebrate H4 groups. Three-dimensional model of MrH4 was established using I-TASSER program and the model was validated using Ramachandran plot analysis. Schiffer-Edmundson helical wheel modeling was used to predict the helix propensity of N (21-42) and C (87-101) terminal derived Mr peptides. The highest gene expression was observed in gills and is induced by viral [white spot syndrome baculovirus (WSBV) and M. rosenbergii nodovirus (MrNV)] and bacterial (Aeromonas hydrophila and Vibrio harveyi) infections. The N and C terminal peptides were synthesized and their antimicrobial and hemolytic properties were examined. Both peptides showed activity against the tested Gram negative and Gram positive bacteria; however, the highest activity was noticed against Gram negative bacteria. Among the two peptides used in this study, C-terminal peptide yielded better results than the N-terminal peptide. Therefore, C terminal peptide can be recommended for the development of an antimicrobial agent.
In this study, we reported a molecular characterization of a novel proto-type galectin-1 from the striped murrel Channa striatus (named as CsGal-1). The full length CsGal-1 was identified from an established striped murrel cDNA library and further we confirmed the sequence by cloning. The complete cDNA sequence of CsGal-1 is 590 base pairs (bp) in length and its coding region encoded a poly peptide of 135 amino acids. The polypeptide contains a galactoside binding lectin domain at 4-135. The domain carries a sugar binding site at 45-74 along with its signatures (H(45)-X-Asn(47)-X-Arg(49) and Trp(69)-X-X-Glu(72)-X-Arg(74)). CsGal-1 shares a highly conserved carbohydrate recognition domain (CRD) with galectin-1 from other proto-type galectin of teleosts. The mRNA expressions of CsGal-1 in healthy and various immune stimulants including Aphanomyces invadans, Aeromonas hydrophila, Escherchia coli lipopolysaccharide and poly I:C injected tissues of C. striatus were examined using qRT-PCR. CsGal-1 mRNA is highly expressed in kidney and is up-regulated with different immune stimulants at various time points. To understand its biological activity, the coding region of CsGal-1 gene was expressed in an E. coli BL21 (DE3) cloning system and its recombinant protein was purified. The recombinant CsGal-1 protein was agglutinated with mouse erythrocytes at a concentration of 4μg/mL in a calcium independent manner. CsGal-1 activity was inhibited by d-galactose at 25mM(-1) and d-glucose and d-fructose at 100mM(-1). The results of microbial binding assay showed that the recombinant CsGal-1 protein agglutinated only with the Gram-negative bacteria. Interestingly, we observed no agglutination against Gram-positive bacteria. Overall, the study showed that CsGal-1 is an important immune gene involved in the recognition and elimination of pathogens in C. striatus.
Studies on the microbial ecology of gut microbiota in bats are limited and such information is necessary in determining the ecological significance of these hosts. Short-nosed fruit bats (Cynopterus brachyotis brachyotis) are good candidates for microbiota studies given their close association with humans in urban areas. Thus, this study explores the gut microbiota of this species from Peninsular Malaysia by means of biochemical tests and 16S rRNA gene sequences analysis. The estimation of viable bacteria present in the stomach and intestine of C. b. brachyotis ranged from 3.06×10(10) to 1.36×10(15)CFU/ml for stomach fluid and 1.92×10(10) to 6.10×10(15)CFU/ml for intestinal fluid. A total of 34 isolates from the stomach and intestine of seven C. b. brachyotis were retrieved. A total of 16 species of bacteria from eight genera (Bacillus, Enterobacter, Enterococcus, Escherichia, Klebsiella, Pantoea, Pseudomonas and Serratia) were identified, Enterobacteriaceae being the most prevalent, contributing 12 out of 16 species isolated. Most isolates from the Family Enterobacteriaceae have been reported as pathogens to humans and wildlife. With the possibility of human wildlife transmission, the findings of this study focus on the importance of bats as reservoirs of potential bacterial pathogens.
Polyhydroxyalkanoate (PHA) is a family of biopolymers produced by some bacteria and is accumulated intracellularly as carbon and energy storage material. Fifteen PHA-producing bacterial strains were identified from bacteria isolated from Antarctic soils collected around Casey Station (66°17'S, 110°32'E) and Signy Island (60°45'S, 45°36'W). Screening for PHA production was carried out by incubating the isolates in PHA production medium supplemented with 0.5% (w/v) sodium octanoate or glucose. 16S rRNA gene sequence analysis revealed that the isolated PHA-producing strains were mainly Pseudomonas spp. and a few were Janthinobacterium spp. All the isolated Pseudomonas strains were able to produce medium-chain-length (mcl) PHA using fatty acids as carbon source, while some could also produce mcl-PHA by using glucose. The Janthinobacterium strains could only utilize glucose to produce polyhydroxybutyrate (PHB). A Pseudomonas isolate, UMAB-40, accumulated PHA up to 48% cell dry mass when utilizing fatty acids as carbon source. This high accumulation occurred at between 5°C and 20°C, then decreased with increasing temperatures. Highly unsaturated mcl-PHA was produced by UMAB-40 from glucose. Such characteristics may be associated with the ability of UMAB-40 to survive in the cold.
In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.
Subtype-specific multiplex reverse transcription-polymerase chain reaction (RT-PCR) was developed to simultaneously detect three subtypes (H5, H7 and H9) of avian influenza virus (AIV) type A. The sensitivity of the multiplex RT-PCR was evaluated and compared to that of RT-PCR-enzyme-linked immunosorbent assay (ELISA) and conventional RT-PCR. While the sensitivity of the multiplex RT-PCR is as sensitive as the conventional RT-PCR, it is 10 times less sensitive than RT-PCR-ELISA. The multiplex RT-PCR is also as sensitive as the virus isolation method in detecting H9N2 from tracheal samples collected at day 3 and 5 post inoculation. Hence, the developed multiplex RT-PCR assay is a rapid, sensitive and specific assay for detecting of AIV subtypes.
In our systematic screening programme for marine actinomycetes, a bioactive Streptomycete was isolated from marine sediment samples of Bay of Bengal, India. The taxonomic studies indicated that the isolate belongs to Streptomyces chibaensis and it was designated as S. chibaensis AUBN1/7. The isolate yielded a cytotoxic compound. It was obtained by solvent extraction followed by the chromatographic purification. Based on the spectral data of the pure compound, it was identified as quinone-related antibiotic, resistoflavine (1). It showed a potent cytotoxic activity against cell lines viz. HMO2 (Gastric adenocarcinoma) and HePG2 (Hepatic carcinoma) in vitro and also exhibited weak antibacterial activities against Gram-positive and Gram-negative bacteria.
The current available molecular method to detect infectious bursal disease virus (IBDV) is by reverse transcriptase-polymerase chain reaction (RT-PCR). However, the conventional PCR is time consuming, prone to error and less sensitive. In this study, the performances of Sybr Green I real-time PCR, enzyme-linked immunosorbent assay (ELISA) and conventional agarose detection methods in detecting specific IBDV PCR products were compared. We found the real-time PCR was at least 10 times more sensitive than ELISA detection method with a detection limit of 0.25pg. The latter was also at least 10 times more sensitive than agarose gel electrophoresis detection method. The developed assay detects both very virulent and vaccine strains of IBDV but not other RNA viruses such as Newcastle disease virus and infectious bronchitis virus. Hence, Sybr Green I-based real-time PCR is a highly sensitive assay for the detection of IBDV.
Black pepper production in Malaysia was restricted by various diseases. Hazardous chemical products appear to be the best solution to control diseases in black pepper cultivation. However, persistence of chemical residues in peppercorns could affect the quality of exports and consumptions. Application of fertilizers is crucial to sustain pepper growth and high yield. But, continuous use of chemical fertilizers could affect the soil ecosystem and eventually restrict nutrient uptake by pepper roots. Therefore, we propose biological approaches as an alternative solution instead of chemical products to sustain pepper cultivation in Malaysia. In this study, we have isolated a total of seven indigenous rhizobacteria antagonistic to soil-borne Fusarium solani, the causal fungus of slow decline, the most serious debilitating disease of black pepper in Malaysia. The isolated bacteria were identified as Bacillus subtilis, Bacillus siamensis, Brevibacillus gelatini, Pseudomonas geniculata, Pseudomonas beteli, Burkholderia ubonensis and Burkholderia territorii. These bacteria were effective in production of antifungal siderophore with the amount of 53.4 %-73.5 % per 0.5 mL of cell-free supernatants. The bacteria also produced appreciable amount of chitinase with chitinolytic index was ranged from 1.19 to 1.76. The bacteria have shown phosphate solubilizing index within 1.61 to 2.01. They were also efficient in ACC deaminase (0.52 mM-0.62 mM) and ammonia (60.3 mM-75.3 mM) production. The isolated antagonists were efficacious in stimulation of black pepper plant growth and root development through IAA (10.5 μg/mL-42.6 μg/mL) secretion. In conclusion, the isolated rhizobacteria are potent to be developed not only as biocontrol agents to minimize the utilization of hazardous chemicals in black pepper disease management, but also developed as bio-fertilizers to improve black pepper plant growth due to their capabilities in plant growth-promotion.
Mycobacterium tuberculosis complex (MTBC) refers to a group of mycobacteria encompassing nine members of closely related species that causes tuberculosis in animals and humans. Among the nine members, Mycobacterium tuberculosis (M. tuberculosis) remains the main causative agent for human tuberculosis that results in high mortality and morbidity globally. In general, MTBC species are low in diversity but exhibit distinctive biological differences and phenotypes among different MTBC lineages. MTBC species are likely to have evolved from a common ancestor through insertions/deletions processes resulting in species speciation with different degrees of pathogenicity. The pathogenesis of human tuberculosis is complex and remains poorly understood. It involves multi-interactions or evolutionary co-options between host factors and bacterial determinants for survival of the MTBC. Granuloma formation as a protection or survival mechanism in hosts by MTBC remains controversial. Additionally, MTBC species are capable of modulating host immune response and have adopted several mechanisms to evade from host immune attack in order to survive in humans. On the other hand, current diagnostic tools for human tuberculosis are inadequate and have several shortcomings. Numerous studies have suggested the potential of host biomarkers in early diagnosis of tuberculosis, in disease differentiation and in treatment monitoring. "Multi-omics" approaches provide holistic views to dissect the association of MTBC species with humans and offer great advantages in host biomarkers discovery. Thus, in this review, we seek to understand how the genetic variations in MTBC lead to species speciation with different pathogenicity. Furthermore, we also discuss how the host and bacterial players contribute to the pathogenesis of human tuberculosis. Lastly, we provide an overview of the journey of "omics" approaches in host biomarkers discovery in human tuberculosis and provide some interesting insights on the challenges and directions of "omics" approaches in host biomarkers innovation and clinical implementation.
The Gram-negative opportunistic pathogen Acinetobacter baumannii has gain notoriety in recent decades, primarily due to its propensity to cause nosocomial infections in critically ill patients. Its global spread, multi-drug resistance features and plethora of virulence factors make it a serious threat to public health worldwide. Though much effort has been expended in uncovering its successes, it continues to confound researchers due to its highly adaptive nature, mutating to meet the needs of a given environment. Its persistence in the clinical setting allows it to be in close proximity to a potential host, where contact can be made facilitating infection and colonization. In this article, we aim to provide a current overview of the bacterial virulence factors, specifically focusing on factors involved in the initial stages of infection, highlighting the role of adaptation facilitated by two-component systems and biofilm formation. Finally, the study of host-pathogen interactions using available animal models, their suitability, notable findings and some perspectives moving forward are also discussed.
Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.
Photobacterium species are widely distributed in the marine environment. The overall metabolism of this genus remains largely unknown. In order to improve our knowledge on this bacterium, the relationship between the genome and phenome of the Photobacterium isolate was analyzed. The cream colored, Gram-negative, rod-shaped and motile bacterial strain, J15, was isolated from marine water of Tanjung Pelepas, Johor, Malaysia. The 5,684,538 bp genome of strain J15 comprised 3 contigs (2 chromosomes and 1 plasmid) with G + C content of 46.39 % and contained 4924 protein-coding genes including 180 tRNAs and 40 rRNAs. The phenotypic microarray (PM) as analyzed using BIOLOG showed the utilization of; i) 93 of the 190 carbon sources tested, where 61 compounds were used efficiently; ii) 41 of the 95 nitrogen sources tested, where 22 compounds were used efficiently; and iii) 3 of the 94 phosphorous and sulphur sources tested. Furthermore, high tolerance to osmotic stress, basic pH and toxic compounds as well as resistance to antibiotics of strain J15 were determined by BIOLOG PM. The ANI and kSNP analyses revealed that strain J15 to be the same species with Photobacterium marinum AK15 with ANI value of 96.93 % and bootstrapping value of 100 in kSNP. Based on the ANI and kSNP analyses, strain J15 was identified as P. marinum J15.
Microplastics pollution has become a threat to aquaculture practices, as nearly all farming systems are saturated with microplastics (MPs) particles. Current research on MPs is limited considering their effects on aquatic organisms and human health. However, limited research has been conducted on potential cures and treatments. In today's world, bioremediation of needful parameters in different culture systems is being successfully practiced by introducing floc-forming bacteria. Researchers had found that some bacteria are efficacious in degrading microplastics particles including polyethylene (PE), polystyrene (PS), and polypropylene (PP). In addition, some bacteria that can form floc, are being used in fish and shellfish culture systems to treat toxic pollutants as the heterotrophic bacteria use organic compounds to grow and are effective in degrading microplastics and minimizing toxic nitrogen loads in aquaculture systems. In this review, the ability of biofloc bacteria to degrade microplastics has been summarized by collating the results of previous studies. The concept of this review may represent the efficacy of biofloc technology as an implicit tool in the fish culture system restricting the MPs contamination in water resources to safeguard ecological as well as human health.
Leptospirosis remains one of the most widespread zoonotic diseases caused by spirochetes of the genus Leptospira, which accounts for high morbidity and mortality globally. Leptospiral infections are often found in tropical and subtropical regions, with people exposed to contaminated environments or animal reservoirs are at high risk of getting the infection. Leptospirosis has a wide range of clinical manifestations with non-specific signs and symptoms and often misdiagnosed with other acute febrile illnesses at early stage of infection. Despite being one of the leading causes of zoonotic morbidity worldwide, there is still a gap between pathogenesis and human immune responses during leptospiral infection. It still remains obscure whether the severity of the infection is caused by the pathogenic properties of the Leptospira itself, or it is a consequence of imbalance host immune factors. Hence, in this review, we seek to summarize the past and present milestone findings on the biomarkers of host immune response aspects during human leptospiral infection, including cytokine and other immune mediators. A profound understanding of the interlink between virulence factors and host immune responses during human leptospirosis is imperative to identify potential biomarkers for diagnostic and prognostic applications as well as designing novel immunotherapeutic strategies in future.
Management of late blight of potato incited by Phytophthora infestans remains a major challenge. Coevolution of pathogen with resistant strains and the rise of fungicide resistance have made it more challenging to prevent the spread of P. infestans. Here, the anti-oomycete potential of Bacillus velezensis VB7 against P. infestans through pan-genome analysis and molecular docking were explored. The Biocontrol potential of VB7 against P. infestans was assessed using a confrontational assay. The biomolecules from the inhibition zone were identified and subjected to in silico analysis against P. infestans target proteins. Nucleotide sequences for 54 B. velezensis strains from different geographical locations were used for pan-genome analysis. The confrontational assay revealed the anti-oomycetes potential of VB7 against P. infestans. Molecular docking confirmed that the penicillamine disulfide had the maximum binding energy with eight effector proteins of P. infestans. Besides, scanning electron microscopic observations of P. infestans interaction with VB7 revealed structural changes in hypha and sporangia. Pan-genome analysis between 54 strains of B. velezensis confirmed that the core genome had 2226 genes, and it has an open pan-genome. The present study confirmed the anti-oomycete potential of B. velezensis VB7 against P. infestans and paved the way to explore the genetic potential of VB7.
Heavy metal wastes, particularly hexavalent chromium [Cr(VI)], are generated from anthropogenic activities, and their increasing abundance has been a research concern due to their toxicity, genotoxicity, carcinogenicity and mutagenicity. Exposure to these dangerous pollutants could lead to chronic infections and even mortality in humans and animals. Bioremediation using microorganisms, particularly bacteria, has gained considerable interest because it can remove contaminants naturally and is safe to the surrounding environment. Bacteria, such as Pseudomonas putida and Bacillus subtilis, can reduce the toxic Cr(VI) to the less toxic trivalent chromium Cr(III) through mechanisms including biotransformation, biosorption and bioaccumulation. These mechanisms are mostly linked to chromium reductase and nitroreductase enzymes, which are involved in the Cr(VI) reduction pathway. However, relevant data on the nitroreductase route remain insufficient. Thus, this work proposes an alternative metabolic pathway of nitroreductase, wherein nitrate activates the reaction and indirectly reduces toxic chromium. This nitroreductase pathway occurs concurrently with the chromium reduction pathway.
Pseudomonas aeruginosa is mostly associated with persistent infections and antibiotic resistance as a result of several factors, biofilms one of them. Microorganisms within the polymicrobial biofilm (PMB) reveal various transcriptional profiles and affect each other which might influence their pathogenicity and antibiotic tolerance and subsequent worsening of the biofilm infection. P. aeruginosa within PMB exhibits various behaviours toward other microorganisms, which may enhance or repress the virulence of these microbes. Microbial neighbours, in turn, may affect P. aeruginosa's virulence either positively or negatively. Such interactions among microorganisms lead to emerging persistent and antibiotic-resistant infections. This review highlights the relationship between P. aeruginosa and its microbial neighbours within the PMB in an attempt to better understand the mechanisms of polymicrobial interaction and the correlation between increased exacerbations of infection and the P. aeruginosa-microbe interaction. Researching in the literature that was carried out in vitro either in co-cultures or in the models to simulate the environment at the site of infection suggested that the interplay between P. aeruginosa and other microorganisms is one main reason for the worsening of the infection and which in turn requires a treatment approach different from that followed with P. aeruginosa mono-infection.
Drought-induced stress represents a significant challenge to agricultural production, exerting adverse effects on both plant growth and overall productivity. Therefore, the exploration of innovative long-term approaches for addressing drought stress within agriculture constitutes a crucial objective, given its vital role in enhancing food security. This article explores the potential use of Trichoderma, a well-known genus of plant growth-promoting fungi, to enhance plant tolerance to drought stress. Trichoderma species have shown remarkable potential for enhancing plant growth, inducing systemic resistance, and ameliorating the adverse impacts of drought stress on plants through the modulation of morphological, physiological, biochemical, and molecular characteristics. In conclusion, the exploitation of Trichoderma's potential as a sustainable solution to enhance plant drought tolerance is a promising avenue for addressing the challenges posed by the changing climate. The manifold advantages of Trichoderma in promoting plant growth and alleviating the effects of drought stress underscore their pivotal role in fostering sustainable agricultural practices and enhancing food security.