Displaying all 20 publications

  1. Mirakhorli M, Rahman SA, Abdullah S, Vakili M, Rozafzon R, Khoshzaban A
    Mol Med Rep, 2013 Feb;7(2):613-7.
    PMID: 23232902 DOI: 10.3892/mmr.2012.1226
    Multidrug resistance protein 2 (MRP2), encoded by the ATP-binding cassette C2 (ABCC2) gene, is an efflux pump located on the apical membrane of many polarized cells, which transports conjugate compounds by an ATP-dependent mechanism. The correlation of G1249A ABCC2 polymorphism with the development of colorectal cancer (CRC) and poor prognosis was evaluated in patients who were treated with fluorouracil/-leucovorin (FL) plus oxaliplatin (FOLFOX-4). A total of 50 paraffin‑embedded tissue samples collected from CRC patients were analyzed to identify the polymorphism. Patients were in stage II/III and received postoperative FOLFOX-4 chemotherapy. As a control group, an equal number of unrelated healthy subjects were enrolled in the study. The polymorphism was genotyped by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method, and results were compared with clinicopathological markers, early relapse and survival rates. During the 12 months of follow-up, local and distant recurrences were observed in 15 (30%) patients. No significant difference in the distribution of wild-type and polymorphic genotypes was observed between the patient and control groups and between the patients who experienced recurrence within 1 year and those who did not (all P>0.05). In conclusion, the G1249A polymorphism is not associated with CRC risk and early recurrence. However, significant correlation was observed between G1249A polymorphism and the overall survival and disease-free survival of the patients.
  2. Daker M, Bhuvanendran S, Ahmad M, Takada K, Khoo AS
    Mol Med Rep, 2013 Mar;7(3):731-41.
    PMID: 23292678 DOI: 10.3892/mmr.2012.1253
    Nasopharyngeal carcinoma (NPC) is a unique tumour of epithelial origin with a distinct geographical distribution, closely associated with the Epstein‑Barr virus (EBV). EBV‑encoded RNAs (EBERs) are small non‑polyadenylated RNAs that are abundantly expressed in latent EBV‑infected NPC cells. To study the role of EBERs in NPC, we established stable expression of EBERs in HK1, an EBV‑negative NPC cell line. Cells expressing EBERs consistently exhibited an increased growth rate. However, EBERs did not confer resistance towards cisplatin‑induced apoptosis or promote migration or invasion ability in the cells tested. Using microarray gene expression profiling, we identified potential candidate genes that were deregulated in NPC cells expressing EBERs. Gene Ontology analysis of the data set revealed that EBERs upregulate the cellular lipid metabolic process. Upregulation of low‑density lipoprotein receptor (LDLR) and fatty acid synthase (FASN) was observed in EBER‑expressing cells. NPC cells exhibited LDL‑dependent cell proliferation. In addition, a polyphenolic flavonoid compound, quercetin, known to inhibit FASN, was found to inhibit proliferation of NPC cells.
  3. Koh RY, Lim CL, Uhal BD, Abdullah M, Vidyadaran S, Ho CC, et al.
    Mol Med Rep, 2015 May;11(5):3808-13.
    PMID: 25585520 DOI: 10.3892/mmr.2015.3193
    Idiopathic pulmonary fibrosis is a chronic pulmonary disease that is characterized by formation of scar tissue in lungs. Transforming growth factor-β (TGF-β) is considered an important cytokine in the pathogenesis of this disease. Hence, the antifibrotic effect of an inhibitor of the TGF-β type I receptor, namely, SB 431542, was investigated in our study. SB 431542 was used to treat TGF-β-treated IMR-90 cells; the expression of α-smooth muscle actin (α-SMA) was detected at the protein level by using an anti-α-SMA antibody, and at the gene level by reverse transcription-quantitative PCR. The effect of the inhibitor on cell proliferation was determined by a cell growth assay. The inhibitor was also administered into bleomycin-treated mice. Histopathological assessment and determination of total collagen levels were carried out to evaluate the severity of lung fibrosis in these mice. Our results demonstrated that treatment with SB 431542 inhibits TGF-β‑induced α-SMA expression in lung fibroblasts, at both the protein and the mRNA levels (P<0.05). However, the inhibitor did not significantly reduce lung fibroblast proliferation. In the bleomycin-induced pulmonary fibrosis mouse model, bleomycin treatment caused important morphological changes, accompanied by an increase in the collagen level of the lungs. Early treatment with SB 431542 prevented the manifestation of histopathological alterations, whereas delayed treatment significantly decreased the collagen level (P<0.05). These results suggest that inhibition of TGF-β signaling, via inhibition of the activin receptor-like kinase-5 (ALK-5) by SB 431542, may attenuate pulmonary fibrosis.
  4. Radwan EM, Abdullah R, Al-Qubaisi MS, El Zowalaty ME, Naadja SE, Alitheen NB, et al.
    Mol Med Rep, 2016 May;13(5):3945-52.
    PMID: 26987078 DOI: 10.3892/mmr.2016.4989
    Patients with cancer often exhibit signs of anemia as the result of the disease. Thus, cancer chemotherapies often include erythropoietin (EPO) in the regime to improve the survival rate of these patients. The aim of the present study was to determine the effect of EPO on doxorubicin-treated breast cancer cells. The cytotoxicity of doxorubicin alone or in combination with EPO against the MCF-7 and MDA-MB‑231 human breast cancer cells were determined using an MTT cell viability assay, neutral red (NR) uptake assay and lactate dehydrogenase (LDH) assay. The estimated half maximal inhibitory concentration values for doxorubicin and the combination of doxorubicin with EPO were between 0.140 and 0.260 µg/ml for all cells treated for 72 h. Treatment with doxorubicin in combination with EPO led to no notable difference in cytotoxicity, compared with treatment with doxorubicin alone. The antiproliferative effect of doxorubicin at a concentration of 1 µg/ml on the MDA‑MB‑231 cells was demonstrated by the decrease in viable cells from 3.6x10(5) at 24 h to 2.1x10(5) at 72 h of treatment. In order to confirm apoptosis in the doxorubicin-treated cells, the activities of caspases-3/7 and ‑9 were determined using a TBE assay. The results indicated that the activities of caspases-3/7 and ‑9 were significantly elevated in the doxorubicin-treated MDA-MB-231 cells by 571 and 645%, respectively, and in the MCF 7 cells by 471 and 345%, respectively, compared with the control cells. EPO did not modify the effect of doxorubicin on these cell lines. The results of the present study suggested that EPO was safe for use in combination with doxorubicin in the treatment of patients with breast cancer and concurrent anemia.
  5. Khoo BY, Nadarajan K, Shim SY, Miswan N, Zang CB, Possinger K, et al.
    Mol Med Rep, 2016 Apr;13(4):3406-14.
    PMID: 26934829 DOI: 10.3892/mmr.2016.4959
    The present study aimed to investigate the effects of bone marrow‑derived mesenchymal stem cells (BMSCs) that had been pretreated with pioglitazone and/or rosiglitazone on the growth and proliferation rate of MCF‑7 cells. The adhesive interaction between the BMSCs and the MCF‑7 cancer cells revealed that the pretreatment of BMSCs with a combination of two types of thiazolidinedione drug reduced the growth and proliferation rate of the MCF‑7 cells. The proliferation rate of the MCF‑7 cells could also be reduced by the non‑adhesive interaction of the cancer cells with BMSCs pretreated with pioglitazone and/or rosiglitazone. The growth and proliferation rate reduction effects on the MCF‑7 cells may be attributed to the reduction in the protein level of fibroblast growth factor 4 (FGF4) in the conditioned medium of the pretreated BMSCs. The evidence that the low protein level of FGF4 in the conditioned medium of the pretreated BMSCs perturbed the proliferation rate of the MCF‑7 cells by reducing the levels of Ki‑67 and proliferating cell nuclear antigen transcripts in the cancer cells was also demonstrated in the present study using a FGF4‑neutralizing antibody. All the above findings demonstrate that future studies on the correlation between FGF4 and pretreated BMSCs would be beneficial.
  6. Kasi RA, Moi CS, Kien YW, Yian KR, Chin NW, Yen NK, et al.
    Mol Med Rep, 2015 Mar;11(3):2262-8.
    PMID: 25411820 DOI: 10.3892/mmr.2014.2979
    para‑Phenylenediamine (p‑PD) is a potential carcinogen, and widely used in marketed hair dye formulations. In the present study, the role of the protein tyrosine kinase (PTK)/Ras/Raf/c‑Jun N‑terminal kinase (JNK) and phosphoinositide 3‑kinase (PI3k)/protein kinase B (Akt) pathways on the growth of NRK‑52E cells was investigated. The results demonstrated that p‑PD reduced cell viability in a dose‑dependent manner. The cell death due to apoptosis was confirmed by cell cycle analysis and an Annexin‑V‑fluorescein isothiocyanate binding assay. Subsequent to staining with 2',7'‑dichlorofluorescin diacetate, the treated cells demonstrated a significant increase in reactive oxygen species (ROS) generation compared with the controls. The effects of p‑PD on the signalling pathways were analysed by western blotting. p‑PD‑treated cells exhibited an upregulated phospho‑stress‑activated protein kinase/JNK protein expression level and downregulated Ras and Raf protein expression levels; however, Akt, Bcl‑2, Bcl‑XL and Bad protein expression levels were not significantly altered compared with the control. In conclusion, p‑PD induced apoptosis by a PTK/Ras/Raf/JNK‑dependent pathway and was independent of the PI3K/Akt pathway in NRK‑52E cells.
  7. Yogarajah T, Bee YT, Noordin R, Yin KB
    Mol Med Rep, 2015 Jan;11(1):515-20.
    PMID: 25324014 DOI: 10.3892/mmr.2014.2686
    This study was conducted to determine the mRNA and protein expression levels of peroxisome proliferator-activated receptors (PPARs) in visceral adipose tissue, as well as serum adipokine levels, in Sprague Dawley rats. The rats were fed either a normal (control rats) or excessive (experimental rats) intake of food for 8 or 16 weeks, then sacrificed, at which time visceral and subcutaneous adipose tissues, as well as blood samples, were collected. The mRNA and protein expression levels of PPARs in the visceral adipose tissues were determined using reverse transcription-polymerase chain reaction and Western blotting, respectively. In addition, the levels of adipokines in the serum samples were determined using commercial ELISA kits. The results revealed that at 8 weeks, the mass of subcutaneous adipose tissue was higher than that of the visceral adipose tissue in the experimental rats, but the reverse occurred at 16 weeks. Furthermore, at 16 weeks the experimental rats exhibited an upregulation of PPARγ mRNA and protein expression levels in the visceral adipose tissues, and significant increases in the serum levels of CCL2 and interleukin (IL)-6 were observed, compared with those measured at 8 weeks. In conclusion, this study demonstrated that the PPARγ expression level was likely correlated with serum levels of CCL2 and IL-6, molecules that may facilitate visceral adipose tissue accumulation. In addition, the levels of the two adipokines in the serum may be useful as surrogate biomarkers for the expression levels of PPARγ in accumulated visceral adipose tissues.
  8. Ling CS, Yin KB, Cun ST, Ling FL
    Mol Med Rep, 2015 Jan;11(1):611-8.
    PMID: 25333818 DOI: 10.3892/mmr.2014.2707
    The function of choline kinase (CK) and ethanolamine kinase (EK) is to catalyse the phosphorylation of choline and ethanolamine, respectively, in order to yield phosphocholine (PCho) and phosphoethanolamine (PEtn). A high expression level of PCho, due to elevated CK activity, has previously been associated with malignant transformation. In the present study, a quantitative polymerase chain reaction was performed to determine the mRNA expression profiles of ck and ek mRNA variants in MCF7 breast, HCT116 colon and HepG2 liver cancer cells. The ck and ek mRNA expression profiles showed that total ckα was expressed most abundantly in the HepG2 cells. The HCT116 cells exhibited the highest ckβ and ek1 mRNA expression levels, whereas the highest ek2α mRNA expression levels were detected in the MCF7 cells. The ckβ variant had higher mRNA expression levels, as compared with total ckα, in both the MCF7 and HCT116 cells. Relatively low ek1 mRNA expression levels were detected, as compared with ek2α in the MCF7 cells; however, this was not observed in the HCT116 and HepG2 cells. Notably, the mRNA expression levels of ckα2 were markedly low, as compared with ckα1, in all three cancer cell lines. The effects of epigenetic modification on ck and ek mRNA expression, by treatment of the cells with the histone deacetylase inhibitor trichostatin A (TSA), were also investigated. The results of the present study showed that the mRNA expression levels of ckα, ckβ and ek2α were affected by TSA. An increase >8-fold was observed in ek2α mRNA expression upon treatment with TSA, in a concentration- and time-dependent manner. In conclusion, the levels of ck and ek transcript variants in the three cancer cell lines were varied. The effects of TSA treatment on the mRNA expression levels of ck and ek imply that ck and ek mRNA expression may be regulated by epigenetic modification.
  9. Koh RY, Sim YC, Toh HJ, Liam LK, Ong RS, Yew MY, et al.
    Mol Med Rep, 2015 Oct;12(4):6293-9.
    PMID: 26239257 DOI: 10.3892/mmr.2015.4152
    The chemotherapeutic agents used to treat nasopharyngeal cancer (NPC) exhibit low efficacy. Strobilanthes crispa Blume is widely used for its anticancer, diuretic and anti‑diabetic properties. The present study aimed to determine the cytotoxic and apoptogenic effects of S. crispa on CNE‑1 NPC cells. A 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5 diphenyl tetrazolium bromide assay was used to evaluate the cytotoxic effects of S. crispa against CNE‑1 cells. The rate of apoptosis was determined using propidium iodide staining and caspase assays. Ethyl acetate, hexane and chloroform extracts of S. crispa leaves all exhibited cytotoxic effects on CNE‑1 cells, at a half maximal inhibitory concentration (IC50) of 119, 123.5 and 161.7 µg/ml, respectively. In addition, hexane, chloroform and ethyl acetate extracts of S. crispa stems inhibited CNE‑1 cell proliferation, at a IC50 of 49.4, 148.3 and 163.5 µg/ml, respectively. Flow cytometric analysis revealed an increased proportion of cells in the sub G1 phase and a decreased proportion of cells in the G2/M phase, following treatment with the extracts. However, the extracts did not alter the activities of caspase ‑3/7, ‑8 and ‑9. No cytotoxic effect was observed when the cells were treated with the methanol and water extracts of S. crispa stems and leaves. In conclusion, the S. crispa extracts were cytotoxic against CNE‑1 cells and these extracts were able to induce apoptosis, independent of caspase activation.
  10. Law BN, Ling AP, Koh RY, Chye SM, Wong YP
    Mol Med Rep, 2014 Mar;9(3):947-54.
    PMID: 24366367 DOI: 10.3892/mmr.2013.1878
    Neurodegenerative diseases remain a global issue which affects the ageing population. Efforts towards determining their aetiologies to understand their pathogenic mechanisms are underway in order to identify a pathway through which therapeutic measures can be applied. One such pathogenic mechanism, oxidative stress (OS), is widely considered to be involved in neurodegenerative disease. Antioxidants, most notably flavonoids, have promising potential for therapeutic use as shown in in vitro and in vivo studies. In view of the importance of flavonoids for combating OS, this study investigated the neuroprotective effects of orientin, which has been reported to be capable of crossing the blood‑brain barrier. The maximum non‑toxic dose (MNTD) of orientin against SH‑SY5Y neuroblastoma cells was determined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. The effects of the MNTD and the half MNTD (½MNTD) of orientin on cell cycle progression and intracellular reactive oxygen species (ROS) levels, as well as the activity of caspases 3/7, 8 and 9 after exposure to 150 µM of hydrogen peroxide (H2O2) were also determined using flow cytometry, a 2',7'‑dichlorodihydrofluorescein‑diacetate (DCFH‑DA) assay and caspase assay kits, respectively. The results revealed that orientin at ≤20 µM was not cytotoxic to SH‑SY5Y cells. After treatment with orientin at the MNTD, the percentage of apoptotic cells was significantly reduced compared with that in cells treated with 150 µM H2O2 alone. The results also showed that, although orientin at the MNTD and ½MNTD did not reduce intracellular ROS levels, it significantly inhibited the activity of caspases 3/7. Caspase 9 was significantly inactivated with orientin at the MNTD. Findings from this study suggest that the neuroprotection conferred by orientin was the result of the intracellular mediation of caspase activity.
  11. Teng LH, Ahmad M, Ng WT, Sabaratnam S, Rasan MI, Parhar I, et al.
    Mol Med Rep, 2015 Oct;12(4):4909-16.
    PMID: 26151677 DOI: 10.3892/mmr.2015.4043
    Gonadotropin‑releasing hormone (GnRH), or its analogues have been demonstrated to exhibit anti‑proliferative effects on tumour cells in ovarian, endometrial and breast cancer through GnRH‑receptors (GnRH‑R). However, the role of GnRH in nasopharyngeal carcinoma (NPC) remains to be elucidated. In order to investigate the effects of GnRH in NPC, the present study examined the expression of the GnRH‑R transcript in NPC and investigated the phenotypic changes in HK1 cells, a recurrent NPC‑derived cell line, upon receiving GnRH treatment. Firstly, the GnRH‑R transcript was demonstrated in the NPC cell lines and four snap frozen biopsies using reverse transcription‑quantitative polymerase chain reaction. In addition, immunohistochemistry revealed the expression of GnRH‑R in two of the eight (25%) NPC specimens. Treatment with GnRH induced a rapid increase in intracellular ionised calcium concentration in the NPC cells. GnRH and its agonists, triptorelin and leuprolide, exerted anti‑proliferative effects on the NPC cells, as determined using an MTS assay. GnRH did not induce any cell cycle arrest in the HK1 cells under the conditions assessed in the present study. Time‑lapse imaging demonstrated a reduction in cell motility in the GnRH‑treated cells. In conclusion, GnRH, or its analogues may have antitumour effects on NPC cells. The consequences of alterations in the levels of GnRH on the progression of NPC require further examination.
  12. Vijayaraghavan K, Rajkumar J, Bukhari SN, Al-Sayed B, Seyed MA
    Mol Med Rep, 2017 Mar;15(3):1007-1016.
    PMID: 28112383 DOI: 10.3892/mmr.2017.6133
    The study of wound‑healing plants has acquired an interdisciplinary nature with a systematic investigational approach. Several biochemicals are involved in the healing process of the body, including antioxidants and cytokines. Although several pharmaceutical preparations and formulations are available for wound care and management, it remains necessary to search for efficacious treatments, as certain current formulations cause adverse effects or lack efficacy. Phytochemicals or biomarkers from numerous plants suggest they have positive effects on different stages of the wound healing process via various mechanisms. Several herbal medicines have displayed marked activity in the management of wounds and various natural compounds have verified in vivo wound healing potential, and can, therefore, be considered as potential drugs of natural origin. Chromolaena odorata (L.) R.M. King and H. Robinson is considered a tropical weed. However, it exhibits anti‑inflammatory, antipyretic, analgesic, antimicrobial, cytotoxic and numerous other relevant medicinal properties on an appreciable scale, and is known in some parts of the world as a traditional medicine used to treat various ailments. To understand its specific role as nature's gift for healing wounds and its contribution to affordable healthcare, this plant must be scientifically assessed based on the available literature. This review aims to summarize the role of C. odorata and its biomarkers in the wound healing activities of biological systems, which are crucial to its potential future drug design, development and application for the treatment of wounds.
  13. Dehbozorgi M, Kamalidehghan B, Hosseini I, Dehghanfard Z, Sangtarash MH, Firoozi M, et al.
    Mol Med Rep, 2018 Mar;17(3):4195-4202.
    PMID: 29328413 DOI: 10.3892/mmr.2018.8377
    Polymorphisms in the cytochrome P (CYP) 450 family may cause adverse drug responses in individuals. Cytochrome P450 2C19 (CYP2C19) is a member of the CYP family, where the presence of the 681 G>A, 636 G>A and 806 C>T polymorphisms result in the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. In the current study, the frequency of the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles in an Iranian population cohort of different ethnicities were examined and then compared with previously published frequencies within other populations. Allelic and genotypic frequencies of the CYP2C19 alleles (*2, *3 and *17) were detected using polymerase chain reaction (PCR)‑restriction fragment length polymorphism analysis, PCR‑single‑strand conformation polymorphism analysis and DNA sequencing from blood samples of 1,229 unrelated healthy individuals from different ethnicities within the Iranian population. The CYP2C19 allele frequencies among the Iranian population were 21.4, 1.7, and 27.1% for the CYP2C19*2, CYP2C19*3 and CYP2C19*17 alleles, respectively. The frequency of the homozygous A/A variant of the CYP2C19*2 allele was significantly high and low in the Lur (P<0.001) and Caspian (P<0.001) ethnicities, respectively. However, the frequency of the homozygous A/A variant of the CYP2C19*3 allele was not detected in the Iranian cohort in the current study. The frequency of the heterozygous G/A variant of the CYP2C19*3 allele had the significantly highest and lowest frequency in the Fars (P<0.001) and Lur (P<0.001) groups, respectively. The allele frequency of the homozygous T/T variant of the CYP2C19*17 allele was significantly high in the Caspian (P<0.001) and low in the Kurd (P<0.05) groups. The frequency of the CYP2C19 alleles involved in drug metabolism, may improve the clinical understanding of the ethnic differences in drug responses, resulting in the advancement of the personalized medicine among the different ethnicities within the Iranian population.
  14. Pang KL, Vijayaraghavan K, Al Sayed B, Seyed MA
    Mol Med Rep, 2018 Feb;17(2):3035-3041.
    PMID: 29257292 DOI: 10.3892/mmr.2017.8262
    The aim of the present study was to investigate the effects of betulinic acid (BetA) on the expression and distribution pattern of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH‑d), an indirect indicator of nitric oxide (NO) synthase in the thymus and spleen of mice. Mice were randomly assigned to four main groups (n=48 per group): Experimental group (BetA), positive control group (goniothalamin), vehicle control group (dimethyl sulfoxide) and control group (without vehicle). Each group was further divided into three equal subgroups according to the treatment length (4, 8 and 12 days). BetA treatment induced the expression of NADPH‑d activity in the thymus and spleen without any significant changes in the morphology of the organs. Furthermore, the expression pattern of NADPH‑d in BetA‑treated animals was significantly increased compared with that in the control animals. NADPH‑d expression in the thymus and spleen suggests that NO signaling may be a potential mechanism underlying the BetA‑induced immunomodulation in these organs. These findings are of direct clinical relevance and may contribute to the further development of BetA as a therapeutic drug.
  15. Xin J, Wan Mahtar WNA, Siah PC, Miswan N, Khoo BY
    Mol Med Rep, 2019 Jun;19(6):5368-5376.
    PMID: 31059050 DOI: 10.3892/mmr.2019.10201
    Cancer chemotherapy possesses high toxicity, particularly when a higher concentration of drugs is administered to patients. Therefore, searching for more effective compounds to reduce the toxicity of treatments, while still producing similar effects as current chemotherapy regimens, is required. Currently, the search for potential anticancer agents involves a random, inaccurate process with strategic deficits and a lack of specific targets. For this reason, the initial in vitro high‑throughput steps in the screening process should be reviewed for rapid identification of the compounds that may serve as anticancer agents. The present study aimed to investigate the potential use of the Pichia pastoris strain SMD1168H expressing DNA topoisomerase I (SMD1168H‑TOPOI) in a yeast‑based assay for screening potential anticancer agents. The cell density that indicated the growth of the recombinant yeast without treatment was first measured by spectrophotometry. Subsequently, the effects of glutamate (agonist) and camptothecin (antagonist) on the recombinant yeast cell density were investigated using the same approach, and finally, the effect of camptothecin on various cell lines was determined and compared with its effect on recombinant yeast. The current study demonstrated that growth was enhanced in SMD1168H‑TOPOI as compared with that in SMD1168H. Glutamate also enhanced the growth of the SMD1168H; however, the growth effect was not enhanced in SMD1168H‑TOPOI treated with glutamate. By contrast, camptothecin caused only lower cell density and growth throughout the treatment of SMD1168H‑TOPOI. The findings of the current study indicated that SMD1168H‑TOPOI has similar characteristics to MDA‑MB‑231 cells; therefore, it can be used in a yeast‑based assay to screen for more effective compounds that may inhibit the growth of highly metastatic breast cancer cells.
  16. Liu X, Zhang R, Shi H, Li X, Li Y, Taha A, et al.
    Mol Med Rep, 2018 May;17(5):7227-7237.
    PMID: 29568864 DOI: 10.3892/mmr.2018.8791
    Ultraviolet (UV) radiation induces DNA damage, oxidative stress, and inflammatory processes in skin, resulting in photoaging. Natural botanicals have gained considerable attention due to their beneficial protection against the harmful effects of UV irradiation. The present study aimed to evaluate the ability of curcumin (Cur) to protect human dermal fibroblasts (HDFs) against ultraviolet A (UVA)‑induced photoaging. HDFs were treated with 0‑10 µM Cur for 2 h and subsequently exposed to various intensities of UVA irradiation. The cell viability and apoptotic rate of HDFs were investigated by MTT and flow cytometry assays, respectively. The effect of UVA and Cur on the formation of reactive oxygen species (ROS), malondialdehyde levels, which are an indicator of ROS, and the levels/activity of antioxidative defense proteins, including glutathione, superoxide dismutase and catalase, were evaluated using 2',7'-dichlorofluorescin diacetate and commercial assay kits. Furthermore, western blotting was performed to determine the levels of proteins associated with endoplasmic reticulum (ER) stress, the apoptotic pathway, inflammation and the collagen synthesis pathway. The results demonstrated that Cur reduced the accumulation of ROS and restored the activity of antioxidant defense enzymes, indicating that Cur minimized the damage induced by UVA irradiation in HDFs. Furthermore, western blot analysis demonstrated that Cur may attenuate UVA‑induced ER stress, inflammation and apoptotic signaling by downregulating the protein expression of glucose‑regulated protein 78, C/EBP‑homologous protein, nuclear factor‑κB and cleaved caspase‑3, while upregulating the expression of Bcl‑2. Additionally, it was demonstrated that Cur may regulate collagen metabolism by decreasing the protein expression of matrix metalloproteinase (MMP)‑1 and MMP‑3, and may promote the repair of cells damaged as a result of UVA irradiation through increasing the protein expression of transforming growth factor‑β (TGF‑β) and Smad2/3, and decreasing the expression of the TGF‑β inhibitor, Smad7. In conclusion, the results of the present study indicate the potential benefits of Cur for the protection of HDFs against UVA‑induced photoaging and highlight the potential for the application of Cur in skin photoprotection.
  17. Ayub Khan SM, Few LL, See Too WC
    Mol Med Rep, 2018 May;17(5):7442-7450.
    PMID: 29568919 DOI: 10.3892/mmr.2018.8762
    Choline kinase (CK) is the first enzyme in the CDP-choline pathway for the synthesis of phosphatidylcholine, the most abundant phospholipid in the mammalian cell membrane. This enzyme exists as three isozymes (α1, α2 and β) and the CKα isozyme has been implicated in cancer pathogenesis. Inhibition of CK activity has been proposed for cancer therapies. MicroRNAs (miRNAs/miRs) are non‑coding RNAs that serve important roles in diverse biological pathways and human diseases, including cancer. However, the regulation of CKα gene expression by miRNAs has never been investigated, to the best of the authors' knowledge. In the present study, two miRNA mimics, miR‑876‑5p and miR‑646, were transfected into the HepG2 cell line and the effect of these miRNAs on the levels of CKα mRNA were determined by reverse transcription‑quantitative polymerase chain reaction. Cells transfected with 25 nM miR‑876‑5p for 48 h exhibited significantly lower levels of CKα mRNA. Following optimization, miR‑876‑5p caused four times lower levels of CKα mRNA compared to the negative control. Effects of the miRNAs on HepG2 cell viability and cellular morphology were additionally analyzed using an MTT cell viability assay and scanning electron microscopy, respectively. HepG2 cells that were transfected with the optimum concentration of miR‑876‑5p for the optimum duration exhibited 25% lower viability than negative control and signs of apoptosis in electron micrographs. The results suggested miR‑876‑5p as a potential miRNA modulator of CKα expression in the cells, and may be relevant for the design of more effective anticancer strategy targeting CK.
  18. Abbasi S, Rasouli M
    Mol Med Rep, 2017 Jun;15(6):3983-3988.
    PMID: 28440412 DOI: 10.3892/mmr.2017.6489
    Fanconi Anemia (FA) is an autosomal recessive syndrome characterized by congenital abnormalities, progressive bone marrow failure and Fanconi anemia complementation group A (FANCA) is also a potential breast and ovarian cancer susceptibility gene. A novel allele with tandem duplication of 13 base pair sequence in promoter region was identified. To investigate whether the 13 base pair sequence of tandem duplication in promoter region of the FANCA gene is of high penetrance in patients with breast cancer and to determine if the presence of the duplicated allele was associated with an altered risk of breast cancer, the present study screened DNA in blood samples from 304 breast cancer patients and 295 normal individuals as controls. The duplication allele had a frequency of 35.4 and 21.2% in patients with breast cancer and normal controls, respectively. There was a significant increase in the frequency of the duplication allele in patients with familial breast cancer compared with controls (45.1%, P=0.001). Furthermore, the estimated risk of breast cancer in individuals with a homozygote [odds ratio (OR), 4.093; 95% confidence intervals (CI), 1.957‑8.561] or heterozygote duplicated genotype (OR, 3.315; 95% CI, 1.996‑5.506) was higher compared with the corresponding normal homozygote genotype. In conclusion, the present study indicated that the higher the frequency of the duplicated allele, the higher the risk of breast cancer. To the best of our knowledge, the present study is the first to report FANCA gene duplication in patients with breast cancer.
  19. Abdallah Q, Al-Deeb I, Bader A, Hamam F, Saleh K, Abdulmajid A
    Mol Med Rep, 2018 Aug;18(2):2441-2448.
    PMID: 29901194 DOI: 10.3892/mmr.2018.9155
    Angiogenesis plays a crucial role in malignant tumor progression and development. The present study aimed to identify lead plants with selective anti-angiogenic properties. A total of 26 methanolic extracts obtained from 18 plants growing in Saudi Arabia and Jordan that belong to the Lamiaceae family were screened for their cytotoxic and anti-angiogenic activities using MTT and rat aortic ring assays, respectively. Four novel extracts of Thymbra capitata (L.) Cav., Phlomis viscosa Poir, Salvia samuelssonii Rech.f., and Premna resinosa (Hochst.) Schauer were identified for their selective anti-angiogenic effects. These extracts did not exhibit cytotoxic effects on human endothelial cells (EA.hy926) indicating the involvement of indirect anti-angiogenic mechanisms. The active extracts are potential candidates for further phytochemical and mechanistic studies.
  20. Yuan JC, Yogarajah T, Lim SK, Yvonne Tee GB, Khoo BY
    Mol Med Rep, 2020 May;21(5):2063-2072.
    PMID: 32323762 DOI: 10.3892/mmr.2020.11012
    Excessive adipose tissue accumulation is an increasing health problem worldwide. The present study aimed to determine differentially expressed genes (DEGs) that are associated with the excessive accumulation of adipose tissues by PCR arrays in an excess dietary intake animal model. For this purpose, male Sprague Dawley rats were randomly assigned to 2 groups: Control (given an ordinary diet) and experimental (given twice the amount of the ordinary diet). After 2 months of feeding, the abdominal cavities of the rats from each group were opened, then subcutaneous and visceral adipose tissues were removed. The adipose tissues collected were then used for total RNA extraction and then reverse transcribed to cDNA, which was then used as a template to identify the DEGs of 84 transcripts for rat obesity by RT2 Profiler PCR Arrays. The results showed significant downregulation of bombesin‑like receptor 3 (BRS3) and uncoupling protein 1 (UCP1) in visceral adipose tissues of experimental rats compared with those of the control rats, and differential gene expression analysis showed an association with fat cell differentiation and regulation of triglyceride sequestration, as well as fatty acid binding. The gene expression patterns observed in the present study, which may be associated with peroxisome proliferator‑activated receptor‑γ (PPARG) on excessive visceral adipose tissue accumulation, may be useful in identifying a group of surrogate biomarkers for the early diet‑induced accumulation of visceral adipose tissue detection in humans. The biomarkers can also be the specific targets for drug development to reduce excessive visceral adipose tissue accumulation in the body and its associated diseases.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links