Displaying all 4 publications

Abstract:
Sort:
  1. Li A, Geyer FC, Blecua P, Lee JY, Selenica P, Brown DN, et al.
    NPJ Breast Cancer, 2019 11 19;5:44.
    PMID: 31754629 DOI: 10.1038/s41523-019-0140-8
    [This corrects the article DOI: 10.1038/s41523-019-0115-9.].
  2. Ng PS, Pan JW, Ahmad Zabidi MM, Rajadurai P, Yip CH, Reuda OM, et al.
    NPJ Breast Cancer, 2021 Apr 23;7(1):46.
    PMID: 33893315 DOI: 10.1038/s41523-021-00254-4
    Rare protein-truncating variants (PTVs) in PALB2 confer increased risk to breast cancer, but relatively few studies have reported the characteristics of tumours with PALB2 PTVs. In this study, we describe molecular characteristics of tumours with either germline or somatic alterations in PALB2. DNA from fresh frozen tumour tissues and matched peripheral blood lymphocytes for 560 breast cancer patients was subjected for whole-exome sequencing (WES), and RNA from tumour tissues was subjected to RNA sequencing (RNA-seq). We found six cases with germline and three with somatic protein-truncating variants in PALB2. The characteristics of tumours in patients with PALB2 PTVs were similar to those with BRCA1 and BRCA2 PTVs, having significantly more somatic alterations, and a high proportion of the mutational signature and genomic scar scores characteristic of deficiencies in homologous recombination (HR), compared to tumours arising in non-carriers. Unlike tumours arising in patients with BRCA1 and BRCA2 PTVs, PALB2 tumours did not have high prevalence of TP53 somatic alterations or an enriched immune microenvironment. In summary, PALB2 tumours show the homologous recombination deficiencies characteristic of BRCA1 and BRCA2 tumours, and highlight the potential clinical relevance of PALB2 mutational status in guiding therapeutic choices.
  3. Li A, Geyer FC, Blecua P, Lee JY, Selenica P, Brown DN, et al.
    NPJ Breast Cancer, 2019;5:23.
    PMID: 31428676 DOI: 10.1038/s41523-019-0115-9
    Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD.
  4. El Bairi K, Haynes HR, Blackley E, Fineberg S, Shear J, Turner S, et al.
    NPJ Breast Cancer, 2021 Dec 01;7(1):150.
    PMID: 34853355 DOI: 10.1038/s41523-021-00346-1
    The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group, we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links