Displaying all 2 publications

Abstract:
Sort:
  1. Yang Y, Fedorov G, Shafranjuk SE, Klapwijk TM, Cooper BK, Lewis RM, et al.
    Nano Lett., 2015 Dec 09;15(12):7859-66.
    PMID: 26506109 DOI: 10.1021/acs.nanolett.5b02564
    Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.
  2. Vasilopoulou M, Kim BS, Kim HP, da Silva WJ, Schneider FK, Mat Teridi MA, et al.
    Nano Lett., 2020 Jul 08;20(7):5081-5089.
    PMID: 32492348 DOI: 10.1021/acs.nanolett.0c01270
    Here we use triple-cation metal-organic halide perovskite single crystals for the transistor channel of a flash memory device. Moreover, we design and demonstrate a 10 nm thick single-layer nanofloating gate. It consists of a ternary blend of two organic semiconductors, a p-type polyfluorene and an n-type fullerene that form a donor:acceptor interpenetrating network that serves as the charge storage unit, and of an insulating polystyrene that acts as the tunneling dielectric. Under such a framework, we realize the first non-volatile flash memory transistor based on a perovskite channel. This simplified, solution-processed perovskite flash memory displays unique performance metrics such as a large memory window of 30 V, an on/off ratio of 9 × 107, short write/erase times of 50 ms, and a satisfactory retention time exceeding 106 s. The realization of the first flash memory transistor using a single-crystal perovskite channel could be a valuable direction for perovskite electronics research.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links