Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Tan KL, Pezzella F
    Oncol Lett, 2016 Dec;12(6):4287-4296.
    PMID: 28101194 DOI: 10.3892/ol.2016.5232
    The capabilities of tumour cells to survive through deregulated cell cycles and evade apoptosis are hallmarks of cancer. The ubiquitin-like proteins (UBL) proteasome system is important in regulating cell cycles via signaling proteins. Deregulation of the proteasomal system can lead to uncontrolled cell proliferation. The Skp, Cullin, F-box containing complex (SCF complex) is the predominant E3 ubiquitin ligase, and has diverse substrates. The ubiquitin ligase activity of the SCF complexes requires the conjugation of neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to cullin proteins. A tumour suppressor and degrading enzyme named NEDD8 ultimate buster 1 (NUB1) is able to recruit HLA-F-adjacent transcript 10 (FAT10)- and NEDD8-conjugated proteins for proteasomal degradation. Ubiquitination is associated with neddylation and FAT10ylation. Although validating the targets of UBLs, including ubiquitin, NEDD8 and FAT10, is challenging, understanding the biological significance of such substrates is an exciting research prospect. This present review discusses the interplay of these UBLs, as well as highlighting their inhibition through NUB1. Knowledge of the mechanisms by which NUB1 is able to downregulate the ubiquitin cascade via NEDD8 conjugation and the FAT10 pathway is essential. This will provide insights into potential cancer therapy that could be used to selectively suppress cancer growth.
  2. Siva Sankar P, Che Mat MF, Muniandy K, Xiang BLS, Ling PS, Hoe SLL, et al.
    Oncol Lett, 2017 Apr;13(4):2034-2044.
    PMID: 28454359 DOI: 10.3892/ol.2017.5697
    Nasopharyngeal carcinoma (NPC) is a type of cancer endemic in Asia, including Malaysia, Southern China, Hong Kong and Taiwan. Treatment resistance, particularly in recurring cases, remains a challenge. Thus, studies to develop novel therapeutic agents are important. Potential therapeutic compounds may be effectively examined using two-dimensional (2D) cell culture models, three-dimensional (3D) spheroid models or in vivo animal models. The majority of drug assessments for cancers, including for NPC, are currently performed with 2D cell culture models. This model offers economical and high-throughput screening advantages. However, 2D cell culture models cannot recapitulate the architecture and the microenvironment of a tumor. In vivo models may recapitulate certain architectural and microenvironmental conditions of a tumor, however, these are not feasible for the screening of large numbers of compounds. By contrast, 3D spheroid models may be able to recapitulate a physiological microenvironment not observed in 2D cell culture models, in addition to avoiding the impediments of in vivo animal models. Thus, the 3D spheroid model offers a more representative model for the study of NPC growth, invasion and drug response, which may be cost-effective without forgoing quality.
  3. Koh RY, Lim FP, Ling LSY, Ng CPL, Liew SF, Yew MY, et al.
    Oncol Lett, 2017 Oct;14(4):4957-4964.
    PMID: 29085507 DOI: 10.3892/ol.2017.6821
    Cancer is a major public health concern not only in developed countries, but also in developing countries. It is one of the leading causes of mortality worldwide. However, current treatments may cause severe side effects and harm. Therefore, recent research has been focused on identifying alternative therapeutic agents extracted from plant-based sources in order to develop novel treatment options for cancer. Strobilanthes crispa Blume is a plant native to countries including Madagascar and Indonesia. It has been used as an anti-diabetic, diuretic and laxative in traditional folk medicine. Furthermore, S. crispa has potential in treating cancer, as evidenced in previous studies. In the present study, the cytotoxic and apoptotic activities of S. crispa crude extracts were investigated in liver and breast cancer cell lines. Hexane, ethyl acetate, chloroform, methanol and water extracts prepared from the leaves, and stems of S. crispa were evaluated for their cytotoxicity on HepG-2 and MDA-MB-231 cells using an MTT assay. The anti-proliferative properties of stem hexane (SH) extract on both cell lines were analysed using cell doubling time determination and cell cycle analysis, while the apoptogenic properties was determined through the detection of caspase-8. Among the extracts tested, SH extract exhibited the lowest half maximal inhibitory concentrations in both the cell lines. The SH extract induced morphological changes in HepG-2 and MDA-MB-231 cells, and significantly delayed cell population doubling time. Furthermore, it altered cell cycle profile and significantly increased caspase-8 activity in HepG-2 cells, but not in MDA-MB-231 cells. In conclusion, the SH extract of S. crispa possesses potent anticancer properties and may be a suitable chemotherapeutic target.
  4. Mohamed Yusoff AA, Mohd Nasir KN, Haris K, Mohd Khair SZN, Abdul Ghani ARI, Idris Z, et al.
    Oncol Lett, 2017 Nov;14(5):5179-5188.
    PMID: 29098023 DOI: 10.3892/ol.2017.6851
    Although the role of nuclear-encoded gene alterations has been well documented in brain tumor development, the involvement of the mitochondrial genome in brain tumorigenesis has not yet been fully elucidated and remains controversial. The present study aimed to identify mutations in the mitochondrial DNA (mtDNA) control region D-loop in patients with brain tumors in Malaysia. A mutation analysis was performed in which DNA was extracted from paired tumor tissue and blood samples obtained from 49 patients with brain tumors. The D-loop region DNA was amplified using the PCR technique, and genetic data from DNA sequencing analyses were compared with the published revised Cambridge sequence to identify somatic mutations. Among the 49 brain tumor tissue samples evaluated, 25 cases (51%) had somatic mutations of the mtDNA D-loop, with a total of 48 mutations. Novel mutations that had not previously been identified in the D-loop region (176 A-deletion, 476 C>A, 566 C>A and 16405 A-deletion) were also classified. No significant associations between the D-loop mutation status and the clinicopathological parameters were observed. To the best of our knowledge, the current study presents the first evidence of alterations in the mtDNA D-loop regions in the brain tumors of Malaysian patients. These results may provide an overview and data regarding the incidence of mitochondrial genome alterations in Malaysian patients with brain tumors. In addition to nuclear genome aberrations, these specific mitochondrial genome alterations may also be considered as potential cancer biomarkers for the diagnosis and staging of brain cancers.
  5. Jamaludin SYN, Azimi I, Davis FM, Peters AA, Gonda TJ, Thompson EW, et al.
    Oncol Lett, 2018 Apr;15(4):4289-4295.
    PMID: 29541196 DOI: 10.3892/ol.2018.7827
    CXC ligand (L)12 is a chemokine implicated in the migration, invasion and metastasis of cancer cells via interaction with its receptors CXC chemokine receptor (CXCR)4 and CXCR7. In the present study, CXCL12-mediated Ca2+signalling was compared with two basal-like breast cancer cell lines, MDA-MB-231 and MDA-MB-468, which demonstrate distinct metastatic potential. CXCL12 treatment induced Ca2+responses in the more metastatic MDA-MB-231 cells but not in the less metastatic MDA-MB-468 cells. Assessment of mRNA levels of CXCL12 receptors and their potential modulators in both cell lines revealed that CXCR4 and CXCR7 levels were increased in MDA-MB-231 cells compared with MDA-MB-468 cells. Cluster of differentiation (CD)24, the negative regulator of CXCL12 responses, demonstrated increased expression in MDA-MB-468 cells compared with MDA-MB-231 cells, and the two cell lines expressed comparable levels of hypoxia-inducible factor (HIF)2α, a CXCR4 regulator. Induction of epithelial-mesenchymal transition (EMT) by epidermal growth factor exhibited opposite effects on CXCR4 mRNA levels compared with hypoxia-induced EMT. Neither EMT inducer exhibited an effect on CXCR7 expression, however hypoxia increased HIF2α expression levels in MDA-MB-468 cells. Analysis of the gene expression profiles of breast tumours revealed that the highest expression levels of CXCR4 and CXCR7 were in the Claudin-Low molecular subtype, which is markedly associated with EMT features.
  6. Hassanudin SA, Ponnampalam SN, Amini MN
    Oncol Lett, 2019 Feb;17(2):1675-1687.
    PMID: 30675227 DOI: 10.3892/ol.2018.9811
    The aim of the present study was to determine the genetic aberrations and novel transcripts, particularly the fusion transcripts, involved in the pathogenesis of low-grade and anaplastic oligodendroglioma. In the present study, tissue samples were obtained from patients with oligodendroglioma and additionally from archived tissue samples from the Brain Tumor Tissue Bank of the Brain Tumor Foundation of Canada. Six samples were obtained, three of which were low-grade oligodendroglioma and the other three anaplastic oligodendroglioma. DNA and RNA were extracted from each tissue sample. The resulting genomic DNA was then hybridized using the Agilent CytoSure 4×180K oligonucleotide array. Human reference DNA and samples were labeled using Cy3 cytidine 5'-triphosphate (CTP) and Cy5 CTP, respectively, while human Cot-1 DNA was used to reduce non-specific binding. Microarray-based comparative genomic hybridization data was then analyzed for genetic aberrations using the Agilent Cytosure Interpret software v3.4.2. The total RNA isolated from each sample was mixed with oligo dT magnetic beads to enrich for poly(A) mRNA. cDNAs were then synthesized and subjected to end-repair, poly(A) addition and connected using sequencing adapters using the Illumina TruSeq RNA Sample Preparation kit. The fragments were then purified and selected as templates for polymerase chain reaction amplification. The final library was constructed with fragments between 350-450 base pairs and sequenced using deep transcriptome sequencing on an Illumina HiSeq 2500 sequencer. The array comparative genomic hybridization revealed numerous amplifications and deletions on several chromosomes in all samples. However, the most interesting result was from the next generation sequencing, where one anaplastic oligodendroglioma sample was demonstrated to have five novel fusion genes that may potentially serve a critical role in tumor pathogenesis and progression.
  7. Kalamegam G, Sait KHW, Anfinan N, Kadam R, Ahmed F, Rasool M, et al.
    Oncol Lett, 2019 May;17(5):4521-4531.
    PMID: 30944641 DOI: 10.3892/ol.2019.10094
    Cytokines enhance tumour cell recognition via cytotoxic effector cells and are therefore effectively used in cancer immunotherapy. Mesenchymal stem cells have efficient homing potential and have been used to target and inhibit various types of cancer mediated by the release of soluble/bioactive factors. Initial evaluation of the human Wharton's jelly stem cell conditioned medium (hWJSC-CM) and cell lysate (hWJSC-CL) against an ovarian cancer cell line (OVCAR3) demonstrated their inhibitory effect in vitro. The secreted cytokine profile was then studied to understand whether the OVCAR3 inhibitory effect was mediated by the cytokines. Expression of cytokines in OVCAR3 following 48 h treatment with hWJSC extracts, namely the hWJSC-CM (50%) and hWJSC-CL (10 µg/ml), was evaluated using multiplex cytokine assay. Paclitaxel (5 nM) was used as a positive control. Cytokines tumour necrosis factor α, interleukin (IL)-4, IL-6, IL-8, IL-10, IL-13, IL-17, IL-1β and granulocyte colony-stimulating factor, reported to be involved in tumour growth, invasion and migration, were significantly decreased. Cytokines with antitumour effects, namely IL-1 receptor antagonist (IL-1RA), IL-2, IL-2 receptor, IL-5, IL-7, IL-12, IL-15, interferon (IFN)-α and IFN-γ, were mildly increased or decreased. Only the increases in IL-1RA (with paclitaxel, hWJSC-CM and hWJSC-CL) and granulocyte-macrophage colony-stimulating factor (with hWJSC-CL) were statistically significant. The chemokines monocyte chemoattractant protein 1, macrophage inflammatory protein (MIP)-1α, MIP-1β and Regulated Upon Activation, Normally T-Expressed, and Secreted were significantly decreased while monokine induced by IFN-γ, IFN-γ induced protein 10 and Eotaxin demonstrated mild decreases. The growth factors basic fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor were significantly decreased. Heatmaps demonstrated differential fold changes in cytokines and hierarchical cluster analysis revealed 3 major and 7 minor sub-clusters of associated cytokines, chemokines and growth factors. In conclusion, the hWJSC extracts decreased the expression of oncogenic cytokines, chemokines and growth factors, which mediated the inhibition of OVCAR3 cells in vitro.
  8. He PY, Yip WK, Jabar MF, Mohtarrudin N, Dusa NM, Seow HF
    Oncol Lett, 2019 Aug;18(2):1949-1960.
    PMID: 31423265 DOI: 10.3892/ol.2019.10492
    The objectives of the present study were to identify the aberrant expression of microRNA (miRNA) in colorectal carcinoma (CRC) tissues from published miRNA profiling studies and to investigate the effects of the identified miRNA inhibitor and mimic miR-96-5p on CRC cell migration and invasion. The altered expression of the regulators of cytoskeleton mRNA in miR-96-5p inhibitor-transfected cells was determined. The miR-96-5p expression level in five CRC cell lines, HCT11, CaCo2, HT29, SW480 and SW620, and 26 archived paraffin-embedded CRC tissues were also investigated by reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR). Cell viability in response to the miR-96-5p inhibitor and mimic transfections was determined by an MTT assay. A Matrigel invasion assay was conducted to select the invasive subpopulation designated SW480-7, by using the parental cell line SW480. The effects of miR-96-5p mimic- or inhibitor-transfected SW480-7 cells on cell migration and invasion were evaluated using the Transwell and Matrigel assays, and the change in expression of the regulators of cytoskeleton mRNAs was identified by Cytoskeleton Regulators RT2-Profiler PCR array followed by validation with RT-qPCR. CRC tissues exhibited a significant increase in miR-96-5p expression, compared with their matched normal adjacent tissues, indicating an oncogenic role for miR-96-5p. The results demonstrated that the miR-96-5p inhibitor decreased the migration of SW480-7 cells, but had no effect on invasion. This may be due to the promotion of cell invasion by Matrigel, which counteracts the blockade of cell invasion by the miR-96-5p inhibitor. The miR-96-5p mimic enhanced SW480-7 cell migration and invasion, as expected. It was determined that there was a >2.5 fold increase in the expression of genes involved in cytoskeleton regulation, myosin light chain kinase 2, pleckstrin homology like domain family B member 2, cyclin A1, IQ motif containing GTPase activating protein 2, Brain-specific angiogenesisinhibitor 1-associated protein 2 and microtubule-actin crosslinking factor 1, in miR-96-5p inhibitor-transfected cells, indicating that they are negative regulators of cell migration. In conclusion, the miR-96-5p inhibitor blocked cell migration but not invasion, and the latter may be due to the counteraction of Matrigel, which has been demonstrated to stimulate cell invasion.
  9. Raikundalia S, Sa'Dom SAFM, Few LL, Too WCS
    Oncol Lett, 2021 Mar;21(3):183.
    PMID: 33574922 DOI: 10.3892/ol.2021.12444
    Choline kinase (ChK) catalyzes the first step in the CDP-choline pathway for the synthesis of phosphatidylcholine. The α isoform of this enzyme is overexpressed in various types of cancer and its inhibition or downregulation has been applied as an anticancer strategy. In spite of increasing attention being paid to ChK expression, as well as its activity and inhibition in cancer, there are only limited studies available on the regulation of ChK, including its regulation by microRNAs (miRNAs/miRs). The dysregulation of gene expression by miRNAs is a common cause for carcinogenesis. In the present study, miR-367-3p was predicted to target the 3'-untranslated region (UTR) of the ChK α (chka) mRNA transcript. The binding of miR-367-3p to the 3'-UTR of chka was validated by a luciferase assay. The effects of the miR-367-3p mimic on chka gene and protein expression levels were determined by reverse transcription-quantitative polymerase chain reaction and western blot analysis, respectively. miR-367-3p significantly downregulated the expression of chka to ~60% of the negative control. Cells transfected with miR-367-3p exhibited higher levels of apoptosis and a lower cell migration compared with the control. To the best of our knowledge, the present study provided the first experimental evidence of the regulation of chka expression by miR-367-3p. The pro-apoptotic and suppressive effects of miR-367-3p on cell migration were similar to the anticancer effects resulting from the inhibition of ChK enzyme activity or the knockdown of chka gene expression by small interfering RNA. Therefore, these findings may potentially lead to the use of miR-367-3p in anticancer strategies that target ChK.
  10. Linton RE, Daker M, Khoo AS, Choo DCY, Viljoen M, Neilsen PM
    Oncol Lett, 2021 Jul;22(1):514.
    PMID: 33986874 DOI: 10.3892/ol.2021.12775
    Nasopharyngeal carcinoma (NPC) is a cancer of the epithelial cells lining the nasopharynx. The incidence of NPC has a distinct geographical distribution, mainly affecting the Chinese population of Southern China. In Malaysia, this cancer is exceptionally prevalent among males. There is a high incidence rate of NPC among the Bidayuh natives in Sarawak, Malaysia. Other than epidemiology reports, there has not been an article describing plausible cancer risk factors contributing to NPC within this native group. Researchers are still trying to understand the reasons the Bidayuh and Southern Chinese are highly susceptible to NPC. This article discusses the risk factors of developing NPC: Epstein-Barr virus infection, genetic predisposition, diet, environmental exposure and tobacco smoking. There is a need to improve the understanding of the role of risk factors to identify new ways to prevent cancer, especially among high-risk groups.
  11. Abdullah MM, Bhat A, Mohamed AK, Ching FY, Ahmed N, Gantotti S
    Oncol Lett, 2016 Apr;11(4):2757-2762.
    PMID: 27073548
    The present retrospective, single-center study evaluated the objective response rate (ORR) and progression-free survival (PFS) of epidermal growth factor receptor (EGFR) mutation-positive Malaysian patients with advanced lung adenocarcinoma treated with gefitinib. During May 2008 to July 2013, 33 patients with Stage IV, EGFR mutation-positive non-small-cell lung cancer (NSCLC) were identified and received gefitinib (250 mg) as first line treatment. The primary and secondary end points were ORR, PFS and safety, respectively. A total of 18 (54.5%) and 2 (6.1%) patients achieved partial response (PR) and complete response (CR) to gefitinib therapy, respectively, yielding an ORR of 60.6% (95% CI, 42.1-77.1%). Patients with exon 20 or 21 mutations (n=6, 66.7%) tended to have better ORR compared with exon 19 (n=22, 59.1%). The median PFS was 8.9 months in Malaysian patients with EGFR mutation-positive NSCLC, treated with gefitinib. The majority of treatment-related toxicity was mild in nature. The most frequently reported adverse events included dry skin (39.4%), skin rash (27.2%), and dermatitis acneiform (15.2%). In conclusion, Malaysian patients with locally advanced and metastatic EGFR mutation-positive NSCLC responded favorably to gefitinib therapy in terms of ORR, median PFS, and tolerability, the results of which were consistent with those of the IPASS study conducted in an Asian population. Considering the efficacy and safety profile of gefitinib, it is a favorable option for the first-line treatment of Malaysian patients with EGFR mutation-positive NSCLC. However, future long-term studies in a larger population of Malaysian patients are required to support whether the prolonged PFS conferred by gefitinib will translate into prolonged overall survival.
  12. Zahary MN, Ahmad Aizat AA, Kaur G, Yeong Yeh L, Mazuwin M, Ankathil R
    Oncol Lett, 2015 Nov;10(5):3216-3222.
    PMID: 26722315
    Colorectal cancer (CRC) occurs as a more common sporadic form and a less common familial form. Our earlier analysis of germline mutations of mismatch repair genes confirmed only 32% of familial CRC cases as Lynch syndrome cases. It was hypothesized that the remaining familial aggregation may be 'polygenic' due to single nucleotide polymorphisms (SNPs) of low penetrance genes involved in cancer predisposition pathways, such as cell cycle regulation and apoptosis pathways. The current case-control study involving 104 CRC patients (52 sporadic and 52 familial) and 104 normal healthy controls investigated the contribution of the SNPs cyclin D1 (CCND1) G870A and tumor protein p53 (TP53) C215G in modulating familial and sporadic CRC susceptibility risk. DNA was extracted from peripheral blood and the polymorphisms were genotyped by employing a polymerase chain reaction-restriction fragment length polymorphism method. The association between these polymorphisms and CRC susceptibility risk was calculated using a binary logistic regression analysis and deriving odds ratios (ORs). The A/A variant genotype of CCND1 and G/G variant genotype of TP53 exhibited a significantly greater association with the risk of sporadic CRC [CCND1: OR, 3.471; 95% confidence interval (CI), 1.443-8.350; P=0.005. TP53: OR, 2.829; CI, 1.119-7.152; P=0.026] as well as familial CRC susceptibility (CCND1: OR, 3.086; CI, 1.270-7.497; P=0.019. TP53: OR, 3.048; CI, 1.147-8.097; P=0.030). The results suggest a potential role of the SNPs CCND1 G870A and TP53 C215G in the modulation of sporadic and familial CRC susceptibility risk.
  13. Abd-Aziz N, Stanbridge EJ, Shafee N
    Oncol Lett, 2015 Oct;10(4):2192-2196.
    PMID: 26622817
    Bortezomib is the first proteasomal inhibitor (PI) to be used therapeutically for treating relapse cases of multiple myeloma and mantle cell lymphoma. A proposed mechanism for its action is that it prevents the proteasomal degradation of proapoptotic proteins, leading to enhanced apoptosis. Although the α subunit of hypoxia-inducible factor (HIF)-1 is not degraded with bortezomib treatment, the heterodimeric HIF-1 fails to transactivate target genes. HIF-1 and HIF-2 are related hypoxia-inducible transcription factors that are important for the survival of hypoxic tumor cells. The majority of reports have focused on the effects of bortezomib on the transcriptional activities of HIF-1, but not HIF-2. The present study investigated the effects of bortezomib on HIF-2 activity in cancer cells with different levels of HIF-1α and HIF-2α subunits. HIF-α subunit levels were detected using specific antibodies, while HIF transcriptional activities were evaluated using immunodetection, reverse transcription-polymerase chain reaction and luciferase reporter assay. Bortezomib treatment was found to suppress the transcription and expression of CA9, a HIF-1-specific target gene; however, it had minimal effects on EPO and GLUT-1, which are target genes of both HIF-1 and HIF-2. These data suggest that bortezomib attenuates the transcriptional activity only of HIF-1, and not HIF-2. This novel finding on the lack of an inhibitory effect of bortezomib on HIF-2 transcriptional activity has implications for the improvement of design and treatment modalities of bortezomib and other PI drugs.
  14. Subramani T, Yeap SK, Ho WY, Ho CL, Osman CP, Ismail NH, et al.
    Oncol Lett, 2015 Jan;9(1):335-340.
    PMID: 25435988
    Tamoxifen (TAM) is the mainline drug treatment for breast cancer, despite its side effects and the development of resistance. As an alternative approach, in the present study a novel combination therapy was established through combining TAM with nordamnacanthal (NDAM) in order to investigate the additive effect of these drugs in MCF-7 human breast cancer cells. A significant dose-dependent reduction in cell viability and an increase in apoptosis were observed in the MCF-7 cells cotreated with TAM and NDAM compared with the untreated control cells or the cells treated with TAM and NDAM alone (P<0.05). The cytotoxic influence of the combination of TAM and NDAM was found to be two-fold that of the individual agents. Annexin V/propidium iodide double-staining revealed the typical nuclear features of apoptosis. Furthermore, an increase in the proportion of apoptotic, Annexin V-positive cells was observed with the combination therapy. Moreover, this apoptotic induction was associated with a collapse of the mitochondrial membrane potential and the generation of reactive oxygen species. To the best of our knowledge, the findings of the present study are the first to suggest that combining TAM with NDAM may be a potential combination therapy for the treatment of breast cancer and may have the potential to minimize or eliminate the side effects associated with high doses of TAM.
  15. Aziz MY, Omar AR, Subramani T, Yeap SK, Ho WY, Ismail NH, et al.
    Oncol Lett, 2014 May;7(5):1479-1484.
    PMID: 24765160
    Damnacanthal, an anthraquinone compound, is isolated from the roots of Morinda citrifolia L. (noni), which has been used for traditional therapy in several chronic diseases, including cancer. Although noni has long been consumed in Asian and Polynesian countries, the molecular mechanisms by which it exerts several benefits are starting to emerge. In the present study, the effect of damnacanthal on MCF-7 cell growth regulation was investigated. Treatment of MCF-7 cells with damnacanthal for 72 h indicated an antiproliferative activity. The MTT method confirmed that damnacanthal inhibited the growth of MCF-7 cells at the concentration of 8.2 μg/ml for 72 h. In addition, the drug was found to induce cell cycle arrest at the G1 checkpoint in MCF-7 cells by cell cycle analysis. Damnacanthal induced apoptosis, determined by Annexin V-fluorescein isothiocyanate/propidium iodide (PI) dual-labeling, acridine-orange/PI dyeing and caspase-7 expression. Furthermore, damnacanthal-mediated apoptosis involves the sustained activation of p21, leading to the transcription of p53 and the Bax gene. Overall, the present study provided significant evidence demonstrating that p53-mediated damnacanthal induced apoptosis through the activation of p21 and caspase-7.
  16. Mirakhorli M, Shayanfar N, Rahman SA, Rosli R, Abdullah S, Khoshzaban A
    Oncol Lett, 2012 Nov;4(5):893-897.
    PMID: 23162618
    Recurrence following failure of chemotherapy limits the application of high doses of anticancer drugs currently used for eliminating cancerous cells. It has been identified that ATP-binding cassette (ABC) multidrug transporters are associated with chemoresistance, which is a major obstacle in cancer therapy. The present study aimed to investigate the association of pretherapeutic multidrug resistance-associated protein 2 (MRP2) expression with response to chemotherapy in stage II/III colorectal cancer (CRC). Protein expression was determined by immunohistochemical analysis of 50 archival samples from patients who had not received preoperative chemotherapy and radiotherapy. All patients were treated with 5-fluorouracil/leucovorin (FL) plus oxaliplatin (FOLFOX-4) regimen for 6 months following curative resection. During the 12 months of follow-up, local and distant recurrences were observed in 15 (30%) cases, of which 5 occurred at the time of chemotherapy. MRP2 expression was observed in 24 (48%) and 7 (14%) cases in the tumor tissues and matched normal tissues, respectively. A significant difference was observed between the positive expression frequency in the tumor tissues compared to the surrounding normal mucosa (P=0.003). The incidence of recurrence and metastasis for patients in the MRP2-positive group was lower than that in the MRP2-negative group (P>0.05); however, all 5 cases who demonstrated recurrence during their treatment were MRP2-positive (P=0.022). MRP2 expression was not correlated with the clinicopathological markers in this group of patients. Kaplan-Meier analysis revealed that MRP2 expression was not associated with a shorter disease-free survival or overall survival of patients (P>0.05). The results of this study indicated that MRP2 is overexpressed in the course of CRC development and progression. However, expression of MRP2 was not associated with recurrence of patients treated with FL and oxaliplatin in the population studied.
  17. Choo ZW, Chakravarthi S, Wong SF, Nagaraja HS, Thanikachalam PM, Mak JW, et al.
    Oncol Lett, 2010 Jan;1(1):215-222.
    PMID: 22966285
    Systemic candidiasis is a fungal infection which coupled with solid malignancies places patients at high risk of succumbing to the disease. Few studies have shown evidence of the relationship between systemic candidiasis and malignancy-induced immunosuppression disease especially in breast cancer. At present, animal studies that exclusively demonstrate this relationship have yet to be conducted. The exact causative mechanism of systemic candidiasis is currently under much speculation. This study therefore aimed to demonstrate this relationship by observing the histopathological changes of organs harvested from female Balb/c mice which were experimentally induced with breast cancer and inoculated with systemic candidiasis. The mice were randomly assigned to five different groups (n=12). The first group (group 1) was injected with phosphate buffer solution, the second (group 2) with systemic candidiasis, the third (group 3) with breast cancer and the final two groups (groups 4 and 5) had both candidiasis and breast cancer at two different doses of candidiasis, respectively. Inoculation of mice with systemic candidiasis was performed by an intravenous injection of Candida albicans via the tail vein following successful culture methods. Induction of mice with breast cancer occurred via injection of 4T1 cancer cells at the right axillary mammary fatpad after effective culture methods. The prepared slides with organ tissues were stained with hematoxylin and eosin, periodic acidic schiff and gomori methenamine silver stains for a histopathological analysis. Grading of primary tumour and identification of metastatic deposits, as well as scoring of inflammation and congestion in all the respective organs was conducted. Statistical tests performed to compare groups 2 and 4 showed that group 4 exhibited a highly statistically significant increase in organ inflammation and congestion (p<0.01). The median severity of candidiasis in the kidneys and liver also increased in group 4 as compared to group 2. In conclusion, based on the above evidence, systemic candidiasis significantly increased in mice with breast cancer.
  18. Mohamad NA, Rahman AA, Sheikh Abdul Kadir SH
    Oncol Lett, 2023 Jan;25(1):34.
    PMID: 36589673 DOI: 10.3892/ol.2022.13620
    Piper betle leaves are widely cultivated in Malaysia, India, Indonesia and Thailand. They have been used as a traditional medicine for centuries due to their medicinal properties, including antioxidant, antiproliferative, antibacterial, antifungal and anti-inflammatory properties, which are attributable to their high phenolic contents. Hydroxychavicol (HC), a primary constituent of P. betle leaves, is known to possess antiproliferative activity at micromolar doses on various cancer cell lines of different origins while leaving normal cells unharmed. The present review summarises the mechanisms of action of HC reported in the literature, reviews the scope of work done thus far and outlines the direction of future research on the potential of HC as an anticancer agent. PubMed, Scopus and Web of Science were searched using the keywords (hydroxychavicol OR 4-allylpyrocatechol OR 4-allylcatechol) AND (cancer OR carcinogenesis OR tumour OR carcinoma) to acquire research articles. In vitro studies reported several possible mechanisms for the chemopreventive effects of HC against cancer cell lines, including chronic myelogenous leukaemia (CML), prostate, glioma, breast and colorectal cancers, while in vivo studies encompassed investigations on Ehrlich ascites carcinoma cells in Swiss albino mice and a CML mouse model. These studies suggest that HC exerts its anticancer effect via the modulation of mitochondrial membrane potential and the c-Jun N-terminal kinase, mitogen-activated protein kinase and endoplasmic reticulum-unfolded protein responses pathways and the generation of reactive oxygen species. In summary, future research should focus on combinations of HC with other anticancer drugs and testing in animal models to evaluate its bioavailability, potency and tissue and dose selectivity.
  19. Abdullah N, Mohamed N
    Oncol Lett, 2021 Nov;22(5):806.
    PMID: 34630713 DOI: 10.3892/ol.2021.13067
    Malaysia is a developing country made up of three main ethnicities: Malay, Chinese and Indian. There are significant ethnic differences with regard to the type of daily food and cooking methods, contraception, breast-feeding preferences, confinement period and care, postmenopausal intake and influence of the traditional healer. Breast cancer is the most common cancer among Malaysian women across all three ethnicities. However, the National Cancer Registry and local medical centres have documented ethnic differences in breast cancer risk (Chinese, 40.7 per 100,000; Indian, 38.1 per 100,000; Malay, 31.5 per 100,000), peak age (youngest in the Malays), stage at presentation (largest percentage at advanced stage among the Malays) and survival (poorest survival rate among the Malays). The Malays have several practices that are protective against breast cancer compared with the Chinese. However, the Malays have strong beliefs in the traditional healer, which contribute to the delay in getting treatment, causing a poor outcome and a low survival rate. The highest BRCA1 and 2 genetic mutation incidence is amongst the Chinese, but the Malays have the largest triple-negative breast cancer rates. These factors may also contribute to the statistical breast cancer data.
  20. Voon YC, Omar IS, Wu MH, Said NABM, Chung I
    Oncol Lett, 2022 Jan;23(1):3.
    PMID: 34820002 DOI: 10.3892/ol.2021.13121
    Cell motility is a critical step in the metastasis cascade. However, the role of cancer-associated fibroblasts (CAFs) in facilitating endometrial cancer (EC) cell motility remains unclear. The present study aimed to investigate the role of CAFs in EC motility in a 3D environment. A co-culture model was established using an EC cell line (ECC-1) and CAFs on a Matrigel® matrix and compared to the respective individual monocultures. It was demonstrated that endometrial CAFs increased the motility of the EC cell line, compared with the monoculture. Using live cell imaging, CAFs were observed to form cell projections that served as contact guidance for ECC-1 cell locomotion in the spheroid formation process. These effects were specific to CAFs, as fibroblasts isolated from benign endometrial tissue samples did not form cell projections. Molecular analysis revealed that RhoA/Rho-associated, coiled-coil containing protein kinase 1 (ROCK1) signaling activation partly contributed to CAF-mediated ECC-1 cell migration. The presence of Matrigel® increased the mRNA expression of RhoA, and the mRNA and protein expression levels of its downstream effectors, ROCK1 and p-MLC, respectively, in the ECC-1 and CAF co-culture, as well as the ECC-1 and CAF monocultures. Interestingly, high phosphorylation levels of myosin light chain mediated the activation of RhoA/ROCK1 signaling in the ECC-1 and CAF co-culture. The ROCK1 inhibitor Y-27632 attenuated the motility of tumor cells in ECC-1 and CAF co-cultures. However, similar treatment led to a significant inhibition in the motility of the CAF monoculture, but not the ECC-1 monoculture. Moreover, tumor spheroid formation was inhibited due to a reduction in stress fiber formation in ECC-1 and CAF co-cultures. Altogether, these findings suggest that the regulation of the RhoA/ROCK1 signaling pathway is required for CAFs to serve as cellular vehicles in order for EC cells to migrate and form spheroids in a 3D environment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links