Displaying all 3 publications

Abstract:
Sort:
  1. Chen M, Boyle EA, Lee JM, Nurhati I, Zurbrick C, Switzer AD, et al.
    Philos Trans A Math Phys Eng Sci, 2016 11 28;374(2081).
    PMID: 29035266 DOI: 10.1098/rsta.2016.0054
    Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
  2. Gradoni G, Russer J, Baharuddin MH, Haider M, Russer P, Smartt C, et al.
    Philos Trans A Math Phys Eng Sci, 2018 Oct 29;376(2134).
    PMID: 30373944 DOI: 10.1098/rsta.2017.0455
    This paper reviews recent progress in the measurement and modelling of stochastic electromagnetic fields, focusing on propagation approaches based on Wigner functions and the method of moments technique. The respective propagation methods are exemplified by application to measurements of electromagnetic emissions from a stirred, cavity-backed aperture. We discuss early elements of statistical electromagnetics in Heaviside's papers, driven mainly by an analogy of electromagnetic wave propagation with heat transfer. These ideas include concepts of momentum and directionality in the realm of propagation through confined media with irregular boundaries. We then review and extend concepts using Wigner functions to propagate the statistical properties of electromagnetic fields. We discuss in particular how to include polarization in this formalism leading to a Wigner tensor formulation and a relation to an averaged Poynting vector.This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.
  3. Daura LU, Tian G, Yi Q, Sophian A
    Philos Trans A Math Phys Eng Sci, 2020 Oct 16;378(2182):20190579.
    PMID: 32921233 DOI: 10.1098/rsta.2019.0579
    Eddy current testing (ECT) has been employed as a traditional non-destructive testing and evaluation (NDT&E) tool for many years. It has developed from single frequency to multiple frequencies, and eventually to pulsed and swept-frequency excitation. Recent progression of wireless power transfer (WPT) and flexible printed devices open opportunities to address challenges of defect detection and reconstruction under complex geometric situations. In this paper, a transmitter-receiver (Tx-Rx) flexible printed coil (FPC) array that uses the WPT approach featuring dual resonance responses for the first time has been proposed. The dual resonance responses can provide multiple parameters of samples, such as defect characteristics, lift-offs and material properties, while the flexible coil array allows area mapping of complex structures. To validate the proposed approach, experimental investigations of a single excitation coil with multiple receiving coils using the WPT principle were conducted on a curved pipe surface with a natural dent defect. The FPC array has one single excitation coil and 16 receiving (Rx) coils, which are used to measure the dent by using 21 C-scan points on the dedicated dent sample. The experimental data were then used for training and evaluation of dual resonance responses in terms of multiple feature extraction, selection and fusion for quantitative NDE. Four features, which include resonant magnitudes and principal components of the two resonant areas, were investigated for mapping and reconstructing the defective dent through correlation analysis for feature selection and feature fusion by deep learning. It shows that deep learning-based multiple feature fusion has outstanding performance for 3D defect reconstruction of WPT-based FPC-ECT. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links