Displaying all 9 publications

Abstract:
Sort:
  1. Liu X, Wu Y, Chen Y, Xu F, Halliday N, Gao K, et al.
    Res. Microbiol., 2016 Apr;167(3):168-77.
    PMID: 26671319 DOI: 10.1016/j.resmic.2015.11.003
    The σ(S) subunit RpoS of RNA polymerase functions as a master regulator of the general stress response in Escherichia coli and related bacteria. RpoS has been reported to modulate biocontrol properties in the rhizobacterium Serratia plymuthica IC1270. However, the role of RpoS in the stress response and biofilm formation in S. plymuthica remains largely unknown. Here we studied the role of RpoS from an endophytic S. plymuthica G3 in regulating these phenotypes. Mutational analysis demonstrated that RpoS positively regulates the global stress response to acid or alkaline stresses, oxidative stress, hyperosmolarity, heat shock and carbon starvation, in addition to proteolytic and chitinolytic activities. Interestingly, rpoS mutations resulted in significantly enhanced swimming motility, biofilm formation and production of the plant auxin indole-3-acetic acid (IAA), which may contribute to competitive colonization and environmental fitness for survival. These findings provide further insight into the strain-specific role of RpoS in the endophytic strain G3 of S. plymuthica, where it confers resistance to general stresses encountered within the plant environment. The heterogeneous functionality of RpoS in rhizosphere and endophytic S. plymuthica populations may provide a selective advantage for better adaptation to various physiological and environmental stresses.
  2. Yeo CC, Tan CL, Gao X, Zhao B, Poh CL
    Res. Microbiol., 2007 Sep;158(7):608-16.
    PMID: 17720458
    Pseudomonas alcaligenes NCIMB 9867 (strain P25X) is known to synthesize two isofunctional gentisate 1,2-dioxygenases (GDO; EC 1.13.11.4) as well as other enzymes involved in the degradation of xylenols and cresols via the gentisate pathway. The hbzE gene encoding what is possibly the strictly inducible gentisate 1,2-dioxygenase II (GDO-II) was cloned, overexpressed and purified as a hexahistidine fusion protein from Escherichia coli. Active recombinant GDO-II had an estimated molecular mass of 150kDa and is likely a tetrameric protein with a subunit mass of approximately 40kDa, similar to the previously characterized gentisate 1,2-dioxygenase I (GDO-I) encoded by xlnE. However, GDO-II was unable to utilize gentisate that is substituted at the carbon-4 position, unlike GDO-I which had broader substrate specificity. GDO-II also possessed different kinetic characteristics when compared to GDO-I. The hbzE-encoded GDO-II shared higher sequence identities (53%) with GDOs from Ralstonia sp. U2 and Polaromonas naphthalenivorans CJ2, compared with only 35% identity with the xlnE-encoded GDO-I. The hbzE gene was found to be part of a cluster of nine genes including the putative regulatory gene designated hbzR, which encodes an LysR-type regulator and is divergently transcribed from the other genes of the hbzHIJKLFED cluster.
  3. Huys G, Bartie K, Cnockaert M, Hoang Oanh DT, Phuong NT, Somsiri T, et al.
    Res. Microbiol., 2007 Apr;158(3):228-35.
    PMID: 17350231
    In the present study, samples of pond water, sediment and farmed species were collected at 12 fish and shrimp farms in Malaysia, Thailand and Vietnam to determine the biodiversity and environmental distribution of chloramphenicol-resistant (CmR) mesophilic heterotrophs in Southeast Asian aquaculture sites. Following isolation on Iso-Sensitest agar supplemented with 35mug ml(-1) Cm and dereplication using (GTG)(5)-PCR fingerprinting, 557 genotypically unique CmR strains were subjected to polyphasic identification. The 557 mesophilic heterotrophic CmR isolates represented 18 different genera largely dominated by the genera Escherichia (40.2%), Pseudomonas (11.7%), Acinetobacter (11.1%), Klebsiella (7.5%) and Bacillus (5.9%). A total of 439 CmR isolates were further assigned to 31 described species or species groups, mainly including organisms that have been associated with various human opportunistic infections such as Escherichia coli (n=219), Pseudomonas putida (n=47), Klebsiella pneumoniae (n=38) and Acinetobacter baumannii (n=23). Strains of Escherichia, and most notably, of E. coli, were the only common group of CmR heterotrophs irrespective of country, sample type or farm type. Together with other predominant but less widespread groups such as acinetobacters and pseudomonads, the results of this biodiversity study suggest that E. coli can be regarded as a potential indicator of Cm resistance in Southeast Asian aquaculture environments.
  4. Momynaliev K, Klubin A, Chelysheva V, Selezneva O, Akopian T, Govorun V
    Res. Microbiol., 2007 May;158(4):371-8.
    PMID: 17363224
    Ureaplasma parvum colonizes human mucosal surfaces, primarily in the respiratory and urogenital tracts, causing a wide spectrum of diseases, from non-gonococcal urethritis to pneumonitis in immunocompromised hosts. Although the basis for these diverse clinical outcomes is not yet understood, more severe disease may be associated with strains harboring a certain set of strain-specific genes. To investigate this, whole genome DNA macroarrays were constructed and used to assess genomic diversity in 10 U. parvum clinical strains. We found that 7.6% of U. parvum genes were dispersed into one or more strains, thus defining a minimal functional core of 538 U. parvum genes. Most of the strain-specific genes (79%) were of unknown function and were unique to U. parvum. Four hypervariable plasticity regions were identified in the genome containing 93% of the variability in the gene pool (UU32-UU33, UU145-UU170, UU440-UU447 and UU527-UU529). We hypothesized that one of them (UU145-UU170) was a pathogenicity island in U. parvum and we characterized it. Thus, we propose that the clinical outcome of U. parvum infection is probably associated with this newly identified pathogenicity island.
  5. Chung PY, Chung LY, Navaratnam P
    Res. Microbiol., 2013 May;164(4):319-26.
    PMID: 23385141 DOI: 10.1016/j.resmic.2013.01.005
    Staphylococcus aureus has become a serious concern in hospitals and community due to rapid adaptation to existing antimicrobial agents. Betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al (BE)] belongs to pentacyclic triterpenoids that are based on a 30-carbon skeleton comprising four six-membered rings and one five-membered ring. In a preliminary study, BE exhibited antimicrobial activity against reference strains of methicillin-resistant and methicillin-sensitive S. aureus. However, the response mechanism of S. aureus to this compound is not known. In this study, the global gene expression patterns of both the reference strains in response to sub-inhibitory concentrations of BE were analyzed using DNA microarray to identify gene targets, particularly essential targets in novel pathways, i.e. not targeted by currently used antibiotics, or novel targets in existing pathways. The transcriptome analysis revealed repression of genes in the aminoacyl-tRNA synthetase and ribosome pathways in both the reference strains. Other pathways such as cell division, two-component systems, ABC transporters, fatty acid biosynthesis and peptidoglycan biosynthesis were affected only in the reference strain of methicillin-resistant S. aureus. The findings suggest that BE regulates multiple desirable targets which could be further explored in the development of therapeutic agents for the treatment of S. aureus infections.
  6. Thong KL, Puthucheary SD, Pang T
    Res. Microbiol., 1997 Mar-Apr;148(3):229-35.
    PMID: 9765803
    We performed genome size estimation of 17 recent human isolates of Salmonella typhi from geographically diverse regions using pulsed-field gel electrophoresis (PFGE) after digestion of chromosomal DNA with restriction endonucleases XbaI (5'-TCTAGA-3'), AvrII (5'-CCTAGG-3') and SpeI (5'-ACTAGT-3'), and summation of the sizes of restriction fragments obtained. All 17 isolates had circular chromosomes, and genome sizes differed by as much as 959 kb, ranging from 3,964 to 4,923 kb (mean genome size = 4,528 kb). The data obtained confirm the usefulness of PFGE in studies of bacterial genome size and are in agreement with recent results indicating considerable genetic diversity and genomic plasticity of S. typhi. The variation in genome sizes noted may be relevant to the observed biological properties of this important human pathogen, including its virulence.
  7. Charles JF, Nicolas L, Sebald M, de Barjac H
    Res. Microbiol., 1990 7 1;141(6):721-33.
    PMID: 1980958
    Sporulation of Clostridium bifermentans serovar malaysia, which has a larvicidal activity towards mosquitoes, was examined by electron microscopy. Parasporal inclusion bodies lacking a crystalline structure were first detected at t5 (5 h after the end of exponentional growth). Also, the presence of "brush-bottle"-like appendages appearing first at t5 was noted; these remained attached to the spores when released after sporangium lysis. Larvicidal activity assayed on Anopheles stephensi larvae appeared at t0 and increased rapidly to a maximum between t5 and t8. However, a decrease in bacterial toxicity occurred with sporangium lysis.
  8. Pérolat P, Grimont F, Regnault B, Grimont PA, Fournié E, Thevenet H, et al.
    Res. Microbiol., 1990 Feb;141(2):159-71.
    PMID: 2189169
    A total of 67 serovar reference strains and 7 isolates belonging to the genus Leptospira were characterized by ribosomal ribonucleic acid (rRNA) gene restriction patterns. Fifty patterns were observed. Strains belonging to different genomic species always gave different patterns. However, genomic species were subdivided into several patterns. Forty-three serovars gave a specific pattern. Some serovars could not be separated by rRNA gene restriction patterns: strains of serovars icterohaemorrhagiae, copenhageni, lai, pyrogenes and jalna gave pattern 1; serovars birkini, mankarso and wolffi gave pattern 4; serovars canicola, gem, hebdomadis, pomona and hardjo (strain hardjoprajitno) gave pattern 12; serovars valbuzzi and zanoni gave pattern 14; serovars jonsis, malaya and sumneri gave pattern 16; serovars arborea, ballum, castellonis and kenya gave pattern 35; and serovars borincana and shermani gave pattern 43. These data provide the bases for a molecular typing system for the genus Leptospira.
  9. Zarkasi KZ, Taylor RS, Glencross BD, Abell GCJ, Tamplin ML, Bowman JP
    Res. Microbiol., 2017 Oct;168(8):751-759.
    PMID: 28728852 DOI: 10.1016/j.resmic.2017.07.003
    In this study, microbial community dynamics were assessed within a simple in vitro model system in order to understand those changes influenced by diet. The abundance and diversity of bacteria were monitored within different treatment slurries inoculated with salmon faecal samples in order to mimic the effects of dietary variables. A total of five complete diets and two ingredients (plant meal) were tested. The total viable counts (TVCs) and sequencing data revealed that there was very clear separation between the complete diets and the plant meal treatments, suggesting a dynamic response by the allochthonous bacteria to the treatments. Automated ribosomal intergenic spacer analysis (ARISA) results showed that different diet formulations produced different patterns of fragments, with no separation between the complete diets. However, plant-based protein ingredients were clearly separated from the other treatments. 16S rRNA Illumina-based sequencing analysis showed that members of the genera Aliivibrio, Vibrio and Photobacterium became predominant for all complete diets treatments. The plant-based protein ingredient treatments only sustained weak growth of the genus Sphingomonas. In vitro based testing of diets could be a useful strategy to determine the potential impact of either complete feeds or ingredients on major fish gastrointestinal tract microbiome members.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links