Displaying all 3 publications

Abstract:
Sort:
  1. Waran V, Narayanan V, Karuppiah R, Thambynayagam HC, Muthusamy KA, Rahman ZA, et al.
    Simul Healthc, 2015 Feb;10(1):43-8.
    PMID: 25514588 DOI: 10.1097/SIH.0000000000000060
    Training in intraventricular endoscopy is particularly challenging because the volume of cases is relatively small and the techniques involved are unlike those usually used in conventional neurosurgery. Present training models are inadequate for various reasons. Using 3-dimensional (3D) printing techniques, models with pathology can be created using actual patient's imaging data. This technical article introduces a new training model based on a patient with hydrocephalus secondary to a pineal tumour, enabling the models to be used to simulate third ventriculostomies and pineal biopsies.
  2. Madan SS, Pai DR
    Simul Healthc, 2014 Apr;9(2):127-35.
    PMID: 24096921 DOI: 10.1097/SIH.0b013e3182a86165
    Arthroscopy uses a completely different skill set compared with open orthopedic surgery. Hitherto, arthroscopy had not been given enough emphasis in the core orthopedic curricula. Simulation has been seen as an excellent way to teach the skills required in arthroscopy. The simulators used for arthroscopy training can be broadly classified into physical simulators such as cadavers, animals, models and box trainers, virtual-reality simulators, and hybrid simulators that combine virtual-reality simulation with physical components that allow real tactile feedback. The advantages and disadvantages of each of these types have been described in this article. The factors that determine skill acquisition using these simulators have been highlighted. In conclusion, simulation seems to be a valuable tool for arthroscopy training, although further studies are needed to state whether this translates into better operative skill on real patients.
  3. Lim AS, Lee SWH
    Simul Healthc, 2022 Apr 01;17(2):131-135.
    PMID: 33273417 DOI: 10.1097/SIH.0000000000000526
    INTRODUCTION: Objective Structured Clinical Examinations (OSCEs) are an accepted technique for evaluation of clinical competence in healthcare. However, the economic imperative requires faculty to control cost, using innovative educational strategies such as virtual simulation. The objective of this study was to evaluate the cost implications of implementing an online interactive learning module [Monash OSCE Virtual Experience (MOVE)].

    METHODS: All fourth-year pharmacy students enrolled in Monash University in 2017 were provided access to MOVE. Cost-minimization analyses were performed to evaluate the cost of introducing MOVE in the pharmacy course using the smallest cohort size (Malaysia campus) of 40 students as the base case. We also determined under what circumstances MOVE would be more cost-effective, considering the different operational situations such as when student numbers increased or when the number of simulation modules created were increased.

    RESULTS: The overall cost of setup and implementation of MOVE in the first year of implementation among 40 students was US $94.38 per student. In comparison, the face-to-face workshop cost was US $64.14 per student. On the second year of implementation, the ongoing cost of operation of MOVE was US $32.86 per student compared with US $58.97 per student using face-to-face workshop. A net benefit using MOVE was observed after the third year of implementation. Larger savings were noted when the cohort size extends larger than 100 students.

    CONCLUSIONS: Monash OSCE Virtual Experience was a flexible and cost-effective approach to aid students in preparation for an OSCE and enhanced students' learning experience. The wider applicability of these findings will need to be explored in other settings.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links