Displaying all 3 publications

Abstract:
Sort:
  1. Ismail NF, Rani AQ, Nik Abdul Malik NM, Boon Hock C, Mohd Azlan SN, Abdul Razak S, et al.
    J Mol Diagn, 2017 03;19(2):265-276.
    PMID: 28087349 DOI: 10.1016/j.jmoldx.2016.10.009
    Tuberous sclerosis complex (TSC) is an autosomal dominant neurocutaneous disorder characterized by tumor growth in multiple organs and caused by mutations in either TSC1 or TSC2 genes. Because of their relatively large genomic sizes, absence of hotspots, and common type of mutations, mutation detection in TSC1 and TSC2 genes has been challenging. We devised a combination of multiple ligation-dependent probe amplification (MLPA) and amplicon sequencing (AS) to simplify the detection strategy, yet we come up with reasonably high detection rate. Thirty-four Malaysian patients diagnosed with TSC were referred to Human Genome Center, Universiti Sains Malaysia. We used a combination of MLPA to detect large copy number changes and AS to detect smaller mutations. TSC1 pathogenic or likely pathogenic mutations were found in 6 patients (18%) and TSC2 in 21 patients (62%), whereas 6 patients (18%) show no mutations and 1 patient (2%) showed only TSC2 missense variant with uncertain significance. Six of the mutations are novel. Our detection strategy costs 81% less and require 1 working week less than the conventional strategy. Confirmatory sequencing using Sanger method on a few representative mutations showed agreement with results of the AS. Combination of MLPA and Illumina MiSeq AS provides a simplified strategy and reasonably high detection rate for TSC1/TSC2 mutation, which suggested application of the strategies into clinical molecular diagnostics.
  2. Rosman N, Nawawi HM, Al-Khateeb A, Chua YA, Chua AL
    J Mol Diagn, 2022 02;24(2):120-130.
    PMID: 35074074 DOI: 10.1016/j.jmoldx.2021.10.006
    Early detection of genetic diseases such as familial hypercholesterolemia (FH), and the confirmation of related pathogenic variants, are crucial in reducing the risk for premature coronary artery disease. Currently, next-generation sequencing is used for detecting FH-related candidate genes but is expensive and time-consuming. There is a lack of kits suitable for the detection of the common FH-related variants in the Asia-Pacific region. Thus, this study addressed that need with the development of an optimized tetra-amplification mutation system (T-ARMS) PCR-based assay for the detection of 12 pathogenic variants of FH in the Asian population. The two important parameters for T-ARMS PCR assay performance-annealing temperature and the ratio of outer/inner primer concentrations-were optimized in this study. The optimal annealing temperature of all 12 T-ARMS PCR reactions was 64.6°C. The ideal ratios of outer/inner primer concentrations with each pathogenic variant were: A1, 1:2; A2, 1:4; L1, 1:10; L2, 1:1; L3, 1:2; L4, 1:8; L5, 1:1; L6, 1:2; L7, 1:8; L8, 1:8; L9, 1:2; and L10, 1:8. The lowest limit of detection using DNA extracted from patients was 0.1 ng. The present article highlights the beneficial findings on T-ARMS PCR as part of the development of a PCR-based detection kit for use in detecting FH in economically developing countries in Asia with a greater prevalence of FH.
  3. Ni Chin WH, Li Z, Jiang N, Lim EH, Suang Lim JY, Lu Y, et al.
    J Mol Diagn, 2021 10;23(10):1359-1372.
    PMID: 34365011 DOI: 10.1016/j.jmoldx.2021.07.013
    Despite the immense genetic heterogeneity of B-lymphoblastic leukemia [or precursor B-cell acute lymphoblastic leukemia (B-ALL)], RNA sequencing (RNA-Seq) could comprehensively interrogate its genetic drivers, assigning a specific molecular subtype in >90% of patients. However, study groups have only started to use RNA-Seq. For broader clinical use, technical, quality control, and appropriate performance validation are needed. We describe the development and validation of an RNA-Seq workflow for subtype classification, TPMT/NUDT15/TP53 variant discovery, and immunoglobulin heavy chain (IGH) disease clone identification for Malaysia-Singapore acute lymphoblastic leukemia (ALL) 2020. We validated this workflow in 377 patients in our preceding Malaysia-Singapore ALL 2003/Malaysia-Singapore ALL 2010 studies and proposed the quality control measures for RNA quality, library size, sequencing, and data analysis using the International Organization for Standardization 15189 quality and competence standard for medical laboratories. Compared with conventional methods, we achieved >95% accuracy in oncogene fusion identification, digital karyotyping, and TPMT and NUDT15 variant discovery. We found seven pathogenic TP53 mutations, confirmed with Sanger sequencing, which conferred a poorer outcome. Applying this workflow prospectively to the first 21 patients in Malaysia-Singapore ALL 2020, we identified the genetic drivers and IGH disease clones in >90% of patients with concordant TPMT, NUDT15, and TP53 variants using PCR-based methods. The median turnaround time was 12 days, which was clinically actionable. In conclusion, RNA-Seq workflow could be used clinically in management of B-cell ALL patients.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links